首页> 外文期刊>Biotechnology Journal: Healthcare,Nutrition,Technology >An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization
【24h】

An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization

机译:利用能够利用纤维二糖和木糖的工程酿酒酵母对纤维素糖化和发酵进行评估

获取原文
获取原文并翻译 | 示例
           

摘要

Commercial-scale cellulosic ethanol production has been hindered by high costs associated with celiulose-to-glucose conversion and hexose and pentose co-fermentation. Simultaneous saccharification and fermentation (SSF) with a yeast strain capable of xylose and cellobiose co-utilization has been proposed as a possible avenue to reduce these costs. The recently developed DA24-16 strain of Saccharomyces cerevisiae incorporates a xylose assimilation pathway and a cellodextrin transporter (CDT) that permit rapid growth on xylose and cellobiose. In the current work, a mechanistic kinetic model of cellulase-catalyzed hydrolysis of cellulose was combined with a multi-substrate model of microbial growth to investigate the ability of DA24-16 and improved cellobiose-consuming strains to obviate the need for exogenously added p-glucosidase and to assess the impact of cellobiose utilization on SSF and separate hydrolysis and fermentation (SHF). Results indicate that improved CDT-containing strains capable of growing on cellobiose as rapidly as on glucose produced ethanol nearly as rapidly as non-CDT-containing yeast supplemented with P-glucosidase. In producing 75 g/L ethanol, SSF with any strain did not result in shorter residence times than SHF with a 12 h saccharification step. Strains with improved cellobiose utilization are therefore unlikely to allow higher titers to be reached more quickly in SSF than in SHF.
机译:商业规模的纤维素乙醇生产已受到与纤维素转化为葡萄糖以及己糖和戊糖共同发酵相关的高成本的阻碍。已经提出了与能够木糖和纤维二糖共同利用的酵母菌株同时糖化和发酵(SSF)作为降低这些成本的可能途径。最近开发的啤酒酵母DA24-16菌株结合了木糖同化途径和纤维糊精转运蛋白(CDT),可以在木糖和纤维二糖上快速生长。在当前的工作中,将纤维素酶催化的纤维素水解机理动力学模型与微生物生长的多底物模型相结合,以研究DA24-16和改良的纤维二糖消耗菌株消除外源添加p-葡糖苷酶和评估纤维二糖利用对SSF的影响以及单独的水解和发酵(SHF)。结果表明,能够在纤维二糖上像在葡萄糖上一样快速生长的改良的含有CDT的菌株产生乙醇的速度几乎与补充有P-葡萄糖苷酶的不含CDT的酵母一样快。在生产75 g / L乙醇中,任何菌株的SSF均没有比糖化12小时的SHF缩短停留时间。因此,纤维二糖利用率提高的菌株与SHF相比不太可能在SSF中更快地达到更高的滴度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号