首页> 外文期刊>Journal of proteome research >Transcriptomic and Proteomic Analysis Revealed the Effect of Funneliformis mosseae in Soybean Roots Differential Expression Genes and Proteins
【24h】

Transcriptomic and Proteomic Analysis Revealed the Effect of Funneliformis mosseae in Soybean Roots Differential Expression Genes and Proteins

机译:转录组和蛋白质组学分析揭示了Funnelificis mosseae在大豆根差异表达基因和蛋白质中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Glycine max is easily infected with root rot in continuous cropping systems, which can severely affect crop yield. Arbuscular mycorrhizal fungi (AMF) can reduce the incidence of root rot and increase plant height and biomass indices. However, the molecular changes that occur during soybean symbiosis with AMF remain largely unknown. To better understand the molecular mechanism underlying soybean symbiosis with AMF, we performed transcriptomic and proteomic analyses to explore the changes in protein expression during a high-incidence period (79 days) in asymbiotic and symbiotic plants and to identify the key proteins that regulate the mechanism of soybean symbiosis with AMF. A total of 10 104 genes were identified in the CK-vs-F comparison, and 11 562 genes were significantly differentially expressed in the AF group compared with the F group. A total of 9488 proteins were identified, with 256 differentially expressed proteins (DEPs) in the CK-vs-F comparison and 651 DEPs in the F-vs-AF comparison. Key pathways and DEPs were found to be involved in processes associated with "phenylalanine metabolism", "plant hormone signal transduction", "plant-pathogen interaction", and "metabolic pathways". The expression of phenylalanine ammonia-lyase (PAL), calcium-dependent protein kinase (CPK), and other defense-related proteins was upregulated by Funneliformis mosseae, indicating that inoculation promotes the development of soybean and increases disease resistance. Our results suggest that symbiosis promotes the growth and development of soybean and increases disease resistance. This study provides new insight into the molecular basis of the mechanism by which AMF affect plant disease resistance.
机译:甘氨酸Max容易感染在连续种植系统中的根腐腐烂,这可能会严重影响作物产量。丛枝菌根真菌(AMF)可以降低根腐腐蚀的发生,增加植物高度和生物质指标。然而,随着AMF的大豆共生期间发生的分子变化仍然很大程度上是未知的。为了更好地了解含有AMF的大豆共生的分子机制,我们进行了转录组和蛋白质组学分析,以探讨偶联和共生植物中高发生期间(79天)的蛋白质表达的变化,并鉴定调节机制的关键蛋白质amf的大豆共生。在CK-VS-F比较中鉴定了总共1010个基因,与F组相比,在AF组中显着表达了11562个基因。鉴定了总共9488个蛋白质,CK-VS-F比较中的256个差异表达蛋白(DEPS)和F-VS-AF比较中的651····莫斯特。发现关键途径和DEPS参与与“苯丙氨酸代谢”,“植物激素信号转导”,“植物 - 病原体相互作用”和“代谢途径”相关的方法。通过Funneliformismosseae上调苯丙氨酸氨酶(PAL),依赖蛋白激酶(CPK),钙依赖性蛋白激酶(CPK)和其他无保护蛋白质的表达,表明接种促进大豆的发育并增加抗病性。我们的研究结果表明,共生促进了大豆的生长和发展,增加了抗病性。本研究提供了新的洞察AMF影响植物疾病抗性的机制的分子基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号