...
首页> 外文期刊>Journal of physical chemistry letters >A Quantum Electrodynamics Description of Quantum Coherence and Damping in Condensed-Phase Energy Transfer
【24h】

A Quantum Electrodynamics Description of Quantum Coherence and Damping in Condensed-Phase Energy Transfer

机译:量子电动力学对冷凝相能量转移中量子相干性和阻尼的描述

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum coherence in condensed-phase electronic resonance energy transfer (RET) is described within the context of quantum electrodynamics (QED) theory. Mediating dressed virtual photons (polaritons) are explicitly incorporated into the treatment, and coherence is understood within the context of interfering Feynman pathways connecting the initial and final states for the RET process. The model investigated is that of an oriented three-body donor, acceptor, and mediator RET system embedded within a dispersive and absorbing polarizable medium. We show how quantum coherence can significantly enhance the rate of RET and give a rigorous picture for subsequent decoherence that is driven by both phase and amplitude damping. Energy-conserving phase damping occurs as a result of geometric and dispersive effects and is associated with destructive interference between Feynman pathways. Dissipative amplitude damping, on the other hand, is attributed to vibronic relaxation and absorptivity of the medium and can be understood as virtual photons (polaritons) leaking into the environment. This model offers insights into the emergence of coherence and subsequent decoherence for energy transfer in photosynthetic systems.
机译:在量子电动力学(QED)理论的背景下描述了冷凝相电子共振能量转移(RET)的量子相干性。调解穿着虚拟光子(Pargitons)被明确地纳入治疗中,并且在干扰Feynman途径的背景下理解相干性,用于连接初始和最终状态的RET过程。研究的模型是嵌入在分散和吸收可极化介质内的面向的三体供体,受体和介导器RET系统的模型。我们展示了量子相干性如何显着提高RET的速率,并为后续变频器提供严格的图像,该谐波由两个相位和振幅阻尼驱动。由于几何和分散效应,能量节能相位阻尼发生,并且与Feynman途径之间的破坏性干扰有关。另一方面,耗散幅度阻尼归因于介质的颤音松弛和吸收率,并且可以理解为泄漏到环境中的虚拟光子(Polaritons)。该模型提供了对光合体系中能量转移的相干性和随后的干式弹性的洞察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号