...
【24h】

Symmetry Reductions and Exact Solutions of Shallow Water Wave Equations

机译:浅水波方程的对称约简和精确解

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we study symmetly reductions and exact solutions of the shallow water wave (SWW) equation uxxxt+αuxuxt+βutuxx-uxt-uxx=0, where αand β are arbitrary, nonzero, constants, which is derivable using the so-called Boussinesq approximation, Two special cases of this equation, or the equivalent nonlocal equation obtained by setting u_x=U, have been discussed in the literature. The case α=2β was discussed by Ablowitz, Kaup, Newell and Segur (Stud. Appl. Math, 53 (194), 249). who showed that this case was solvable by inverse scattering through second-order linear problem. This case and the case α=β were studied by Hirota and Satsum; (J. Phys, Soc, Japan, 40 (1976), 611) using Hirota's bi-linear technique, Further, the case α=β is solvable by inverse scattering through a third-order linear problem. In this paper, a catalogue of symmetry reductions is obtained using the classical lie method and the nonclassical method due to Bluman and Cole (J. Math Mech, 18 (1969), 1025). The classical Lie method yields symmetry redu(ions of (1) expressible in terms of the first, third and fifth Painleve transcendents and Weierstras: elliptic functions. The nonclassical method yields a plethora of exace solutions of (1) with α=β which possess a rich variety of qualitative behaviours. these solutions all like a two-soliton solution for t<0 but differ radically for t>0 and may be viewed as a nonlinear superposition of two solitions, one travelling to the left with abitrary speed and the other to the right with equal and opposite speed. These families of solutions have important implications with regard to the numerical analysis of SWW and suggests that solving (1) numerically could pose some fundamental difficulties. In particular, one would not be able to distinguish the solutions in an initial-value problem since an exponentially small change in the initial conditions can result in completely different qualiative behaviours. We compare the two-soliton solutions obtained using the nonclassical method to those obtained using the singular manifold method and Hirota's bi-linear mehtod. Further, we show that there is an analogous nonlinear superposition of solutions for two (2+1) dimensional generalisations of the SWW Equation (1) with α=β. This yields solutions expressible as the sum of two solutions of the Korteweg-de Vries equation.
机译:在本文中,我们研究了浅水波(SWW)方程uxxxt +αuxuxt+βutuxx-uxt-uxx= 0的对称约简和精确解,其中α和β为任意,非零,常数,可使用所谓的Boussinesq推导在文献中已经讨论了该方程的两个特殊情况,或者通过设置u_x = U获得的等效非局部方程。 Ablowitz,Kaup,Newell和Segur(Stud。Appl。Math,53(194),249)讨论了α=2β的情况。他证明了这种情况可以通过二阶线性问题的逆散射来解决。 Hirota和Satsum研究了这种情况和α=β的情况。 (J. Phys,Soc,Japan,40(1976),611)使用Hirota的双线性技术,此外,通过三阶线性问题的逆散射可以解决α=β的情况。在本文中,由于布鲁曼和科尔的影响,使用经典的lie方法和非经典的方法获得了对称约简的目录(J. Math Mech,18(1969),1025)。经典的Lie方法产生的对称还原(1)可以用第一,第三和第五个Painleve超越者和Weierstras表示:椭圆函数;非经典方法产生的(1)具有α=β的过多的正解这些解决方案都像是t <0的两孤子解决方案,但对于t> 0则根本不同,并且可以看作是两个孤立的非线性叠加,一个以任意速度向左移动,另一个这些解决方案族对SWW的数值分析具有重要意义,并表明解决(1)在数值上可能会带来一些基本困难,特别是,人们将无法区分解决方案在初始值问题中,因为初始条件的指数变化很小,可以导致完全不同的定性行为,我们比较获得的两个孤子解使用非经典方法而不是使用奇异流形方法和Hirota的双线性方法。此外,我们表明,对于α=β的SWW方程(1)的二维(2 + 1)概化,存在类似的非线性叠加解。这产生了可表示为Korteweg-de Vries方程两个解之和的解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号