...
首页> 外文期刊>Journal of Micromechanics and Microengineering >Hydrodynamic channeling as a controlled flow reversal mechanism for bidirectional AC electroosmotic pumping using glassy carbon microelectrode arrays
【24h】

Hydrodynamic channeling as a controlled flow reversal mechanism for bidirectional AC electroosmotic pumping using glassy carbon microelectrode arrays

机译:使用玻璃碳微电极阵列作为双向AC电渗泵浦的受控流动反转机制的流体动力通道

获取原文
获取原文并翻译 | 示例
           

摘要

Controlled bidirectional flow by AC electroosmotic means is achieved using asymmetric coplanar and high-aspect-ratio glassy carbon electrodes and without the involvement of moving elements. The forward and backward fluidic propulsion is the result of hydrodynamic channeling of the fluid in a microfluidic device. The asymmetric coplanar electrodes were fabricated by photolithographic patterning of SU-8 photoresist, followed by pyrolysis at 900 degrees C. Morphological characterization of the carbon structures was carried out by SEM and confocal microscopy. Then, Raman and EDX spectroscopies confirmed that the resulting carbon material is appropriate for electrokinetic applications. A finite element analysis was carried out to study the flow development by AC electroosmosis. Electrode arrays of three different asymmetry ratios (60 mu m:20 mu m, 80 mu m:20 mu m, and 100 mu m:20 mu m) were fabricated and tested. Fluid velocity was measured for an applied bias in the 2-20 V-PP amplitude range, and in the 1 kHz to 200 MHz frequency range. Overall maximum measured forward and reverse fluid velocities were 28.59 mu m s(-1) and 338 mu m s(-1), respectively. On an additional set of devices with the same asymmetry ratios, a second photolithography step was utilized to produce high-aspect-ratio microposts on top of the coplanar electrodes to study the effect of high electrode contact surface to generate bidirectional flow. Using the same amplitude and frequency ranges as for planar structures in experimental testing, the overall maximum measured velocities were 9.23 mu m s(-1) and 90.66 mu m s(-1) for the forward and reverse regimes, respectively. In contrast to the planar electrodes, microposts-containing electrodes had more balanced velocity magnitudes between reverse and forward flows as the asymmetry ratio increases. In this case, the use of this electrode topology can be useful when symmetry of the forward and backward flow is more important than the magnitude of the volumetric flow rate.
机译:使用非对称共面和高纵横比玻冰碳电极实现AC电镀方法的受控双向流动,并且没有移动元件的参与。前向和后向流体推进是微流体装置中流体流体动力学通道的结果。通过SU-8光致抗蚀剂的光刻图案化制造不对称共面电极,然后在900摄氏度下热解。通过SEM和共聚焦显微镜进行碳结构的形态学表征。然后,拉曼和EDX光谱证实得到的碳材料适用于电动应用。进行了有限元分析,以研究AC电渗。制造并测试三种不同的不对称比率的电极阵列(60μm:20μm,80μm:20μm,和100μm:20μm)。测量流体速度,用于2-20V-PP幅度范围内的施加偏压,在1kHz至200MHz频率范围内测量施加偏压。总最大值测量的前向和反向流体速度分别为28.59μms(-1)和338μms(-1)。在具有相同不对称比的另一组装置上,利用第二光刻步骤在共面电极的顶部产生高纵横比微孔,以研究高电极接触表面产生双向流动的影响。使用相同的幅度和频率范围,如实验测试中的平面结构,对于前方和反向制度,总体最大测量速度分别为9.23μms(-1)和90.66μms(-1)。与平面电极相反,随着不对称比的增加,含微孔的电极在反向和正向之间具有更高的速度幅度。在这种情况下,当前向和向后流的对称性比体积流量的幅度更重要时,使用该电极拓扑的使用可以是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号