首页> 外文期刊>Journal of natural gas science and engineering >Study on desorption and diffusion dynamics of coal reservoir through step-by-step depressurization simulation-an experimental simulation study based on LF-NMR technology
【24h】

Study on desorption and diffusion dynamics of coal reservoir through step-by-step depressurization simulation-an experimental simulation study based on LF-NMR technology

机译:基于LF-NMR技术的煤水储层解吸与扩散动力学研究 - 基于LF-NMR技术的实验模拟研究

获取原文
获取原文并翻译 | 示例
       

摘要

Pressure dropping control is one of the key technologies for coalbed methane surface development. Low-field nuclear magnetic resonance (LF-NMR) technology was adopted to study methane diffusion and pore dynamics of various pressure drop procedures. Calibration, isothermal desorption, pressure step-down desorption, and pore dynamic experiments were conducted with high-rank coal samples. The results include the following four aspects. 1) Calibration experiments of methane content and LF-NMR T-2 spectrum in confined cylindrical coal samples show that adsorbed, porous medium-confined and bulk methane can be distinguished and quantitatively calculated using LF-NMR technology. 2) According to the desorption equation fitting using LF-NMR technology, ultimate desorption volume at different stages of depressurization is calculated and the overall desorption process has been divided into inefficiency, slow, rapid, and sensitive stage. 3) LF-NMR desorption experiments with constant confine pressure show that cumulative desorption volume of two and three step-down pressure reductions are higher than that of one-step and uniform pressure reductions. Synchronisation of rapid or sensitive desorption stage and large effective diffusion coefficient (D-e) are keys to achieve a high cumulative gas production. 4) D-e varies significantly along with the variation of equilibrium gas pressure at the inefficiency and slow desorption stage, which is mainly affected by the surface coverage. Stress compression and matrix shrinkage coupling influence the pore structure at rapid and sensitive stage, thereby on D-e. The different desorption results using various depressurization schemes are the reason that pore deformation behaviour causing dynamic variation of the diffusion process. The above results can provide a basis for optimising the drainage work of coalbed methane.
机译:压力下降控制是煤层气表面发育的关键技术之一。采用低场核磁共振(LF-NMR)技术研究各种压降程序的甲烷扩散和孔隙动力学。用高级煤样品进行校准,等温解吸,压力降压解吸和孔动力学实验。结果包括以下四个方面。 1)甲烷含量的校准实验和受限圆柱煤样中的LF-NMR T-2光谱表明,可以使用LF-NMR技术来区分和定量计算吸附,多孔介质局部孔和散装甲烷。 2)根据使用LF-NMR技术的解吸方程配件,计算了不同抑制阶段的最终解吸体积,并且整体解吸过程被分为低效率,缓慢,快速和敏感的阶段。 3)LF-NMR解吸实验具有恒定限制压力,表明,两次和三次降压压力减少的累积解吸体积高于单步和均匀的压力降低。快速或敏感的解吸阶段的同步和大的有效扩散系数(D-E)是达到高累积气体生产的键。 4)D-E随着效率低下和缓慢解吸阶段的平衡气体压力的变化而变化显着,其主要受表面覆盖的影响。应力压缩和基质收缩偶联耦合在快速和敏感阶段影响孔结构,从而D-e。使用各种减压方案的不同解吸结果是孔隙变形行为导致扩散过程的动态变化的原因。上述结果可以为优化煤层气的排水作用提供依据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号