首页> 外文期刊>Journal of natural gas science and engineering >Experimental evidence of gas densification and enhanced storage in nanoporous shales
【24h】

Experimental evidence of gas densification and enhanced storage in nanoporous shales

机译:纳米孔子山脉气体致密化和增强储存的实验证据

获取原文
获取原文并翻译 | 示例
       

摘要

There is a growing body of evidence that gas situated within the pores of nanoporous materials may not have the same equation of state (pressure, volume, and temperature, PVT) properties as macroscopic free gas. However, there is limited experimental measurement of in-situ fluid properties for gases taken up by nanopomus shales. In this work, we use a gas injection porosimetry approach to measure the gas storage capacity of four different North American shales (Bakken, Marcellus, Haynesville, and Mancos) and in-situ gas density for a few different hydrocarbon and noble gases. We find the porosity measured with helium to be reasonable between 5% and 16.4%. However, when using other gases such as methane, argon, and ethylene, the equivalent porosity estimations are extremely high, with the highest measured value being 309% for ethylene gas in a Marcellus shale sample. Such extreme results raise questions on the validity of the underlying assumptions of the pomsimetry equations, in particular, the description of gas density within shale nanopores with macroscopic density. The experimentally measured density of in-situ gas is found to be up to 28 times higher than the theoretically estimated one at the equilibrium PVT conditions. This in-situ densification of gas is independently verified using X-ray CT imaging on one of the samples - the Marcellus. The underlying mechanism for gas densification could be explained by adsorption, in which case the proportion of adsorbed gas is estimated to be between 12% and 96% for the various gas-sample pairs. Surface area measurements show that a monolayer of adsorbed gas can only account for 27%-42% of the adsorbed gas. This calls into question the commonly assumed Langmuir monolayer model of adsorption, and indicates that gas densification within shale nanopores can be attributed to a multilayer adsorption mechanism and/or other unidentified mechanisms that require further study.
机译:存在越来越多的证据,即位于纳米多孔材料的孔内的气体可能与宏观自由气体的状态(压力,体积和温度,PVT)性质相同的状态。然而,有限的实验测量对由纳米米丘斯占用的气体的原位流体性质进行实验测量。在这项工作中,我们使用气体喷射孔隙测定方法来测量四种不同北美Shales(Bakken,Marcellus,Haynesville和Mancos)的储气能力,以及用于几种不同的碳氢化合物和惰性气体的原位气密。我们发现用氦气测量的孔隙率合理于5%至16.4%。然而,当使用诸如甲烷,氩气和乙烯的其他气体时,等效孔隙率估计非常高,测量值最高为Marcellus页岩样品中的乙烯气体309%。这种极端结果提出了关于分数方程的潜在假设的有效性的问题,特别是具有宏观密度的页岩纳米孔内的气体密度的描述。发现原位气体的实验测定密度高于在平衡PVT条件下高于理论估计的28倍。这种原位致密化在其中一个样品上使用X射线CT成像独立验证 - Marcellus。可以通过吸附来解释气体致密化的潜在机制,在这种情况下,吸附气体的比例估计为各种气体样品对的12%至96%。表面积测量表明,吸附气体的单层只能占吸附气体的27%-42%。这次调用常用的Langmuir Monolayer模型的吸附,并表明页岩纳米孔内的气体致密化可归因于多层吸附机制和/或需要进一步研究的其他身份不明机构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号