首页> 外文期刊>Journal of Non-Newtonian Fluid Mechanics >Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type
【24h】

Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type

机译:盖子和时间依赖的数值近似的盖子驱动腔问题的功率法流体使用VMS型稳定的有限元配方在高雷诺数下流动

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, a variational multiscale finite element formulation is used to approximate numerically the liddriven cavity flow problem for high Reynolds numbers. For Newtonian fluids, this benchmark case has been extensively studied by many authors for low and moderate Reynolds numbers (up to Re = 10, 000), giving place to steady flows, using stationary and time-dependent approaches. For more convective flows, the solution becomes unstable, describing an oscillatory behavior. The critical Reynolds number which gives place to this time-dependent fluid dynamics has been defined over a wide range 7, 300 less than or similar to Re less than or similar to 35, 000, using different numerical approaches. In the non-Newtonian case, the cavity problem has not been studied deeply for high Reynolds number (Re 10, 000), specifically, in the oscillatory time-dependent case. A VMS formulation is presented to be validated using existing results, to determine flow conditions at which the instability appears, and lastly, to establish new benchmark solutions for high-Reynolds numbers fluid flows using the power-law model. Obtained results show a good agreement with those reported in the references, and new data related with the oscillatory behavior of the flow has been found for the non-Newtonian case. In this regard, time-dependent flows show dependence on both Reynolds number and power-law index, and the unsteady starting point has been determined for all studied cases. It is determined that the critical Reynolds number (Re-c) that defines the first Hopf bifurcation for Newtonian fluid flow is ranged between 8,100 less than or similar to Re, less than or similar to 8, 250, whereas for power-law indexes n = 0.5 and n = 1.5, it is 7,100 less than or similar to Re, less than or similar to 7,200 and 18,250 less than or similar to Re, less than or similar to 18,500, respectively.
机译:在这项工作中,改变多尺度有限元件配方用于近似数字地是高雷诺数的盖子腔流量问题。对于牛顿流体,这种基准案例已经广泛地研究了许多作者,用于低于和中度雷诺数(最高= 10,000),使用静止和时间依赖的方法给出稳定流动的地方。对于更多对流流,解决方案变得不稳定,描述了振荡行为。在使用不同的数值方法的宽范围7,300小于或类似于35,000的宽范围内,施列到该时间依赖流体动力学的关键雷诺数已经定义为宽范围7,300,或者与35,000相似。在非牛顿案例中,腔问题尚未深入研究高雷诺数(Re& 10,000),具体地,在振荡时间依赖的情况下。提出了使用现有结果进行验证的VMS制剂,以确定不稳定性出现的流动条件,最后,为使用电力法模型建立高雷诺数流体流动的新基准解决方案。获得的结果表明,与参考文献中报告的那些吻合良好,并且已经找到了与非牛顿案件的流动振荡行为有关的新数据。在这方面,时间相关的流动显示依赖于雷诺数和权力法指数,并且已经确定了所有研究的病例的不稳定起点。确定定义牛顿流体流动的第一跳蚤分叉的关键雷诺数(RE-C)的范围在8.100之间,与RE,小于或类似于8,250,而对于电力法指数N小于或类似。 = 0.5和n = 1.5,它为7,100少于或类似于重新,小于或类似于7,200和18,250,分别小于或类似于18,500。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号