...
首页> 外文期刊>Journal of neurosurgical sciences >A time-efficient implementation of Extended Kalman Filter for sequential orbit determination and a case study for onboard application
【24h】

A time-efficient implementation of Extended Kalman Filter for sequential orbit determination and a case study for onboard application

机译:用于顺序轨道确定的扩展卡尔曼滤波器的延长卡尔曼滤波器的时间效率实现以及车载应用程序的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Onboard orbit determination (OD) is often used in space missions, with which mission support can be partially accomplished autonomously, with less dependency on ground stations. In major Global Navigation Satellite Systems (GNSS), inter-satellite link is also an essential upgrade in the future generations. To serve for autonomous operation, sequential OD method is crucial to provide real-time or near real-time solutions. The Extended Kalman Filter (EKF) is an effective and convenient sequential estimator that is widely used in onboard application. The filter requires the solutions of state transition matrix (STM) and the process noise transition matrix, which are always obtained by numerical integration. However, numerically integrating the differential equations is a CPU intensive process and consumes a large portion of the time in EKF procedures. In this paper, we present an implementation that uses the analytical solutions of these transition matrices to replace the numerical calculations. This analytical implementation is demonstrated and verified using a fictitious constellation based on selected medium Earth orbit (MEO) and inclined Geosynchronous orbit (IGSO) satellites. We show that this implementation performs effectively and converges quickly, steadily and accurately in the presence of considerable errors in the initial values, measurements and force models. The filter is able to converge within 2–4?h of flight time in our simulation. The observation residual is consistent with simulated measurement error, which is about a few centimeters in our scenarios. Compared to results implemented with numerically integrated STM, the analytical implementation shows results with consistent accuracy, while it takes only about half the CPU time to filter a 10-day measurement series. The future possible extensions are also discussed to fit in various missions.
机译:板载轨道确定(OD)通常用于太空任务,可以自主地部分地完成任务支持,较少依赖地面站。在主要的全球导航卫星系统(GNSS)中,卫星间链接也是后代的必要升级。为了为自主操作服务,顺序OD方法至关重要,可提供实时或近实时解决方案。扩展卡尔曼滤波器(EKF)是一种有效且方便的顺序估计器,广泛用于板载应用。滤波器需要状态转换矩阵(STM)和过程噪声转换矩阵的解,总是通过数值积分获得。然而,数值集成的微分方程是CPU密集过程,并在EKF程序中消耗大部分时间。在本文中,我们介绍了一种使用这些转换矩阵的分析解决方案来替换数值计算。该分析实施方式通过基于所选择的介质地球轨道(MEO)和倾斜的地球同步轨道(IGSO)卫星使用虚拟星座来证明和验证。我们表明该实现在初始值,测量和力模型中存在相当大的误差时,在存在相当大的误差的情况下快速,稳定,准确地收敛。过滤器能够在我们的模拟中的飞行时间2-4小时内收敛。观察残留是与模拟测量误差一致的,这在我们的场景中大约几厘米。与在数值集成的STM实现的结果相比,分析实施显示了以一致的准确性显示结果,同时只需要约一半的CPU时间来过滤10天测量系列的一半。还讨论了未来可能的扩展以适应各种任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号