首页> 外文期刊>Advances in space research >A time-efficient implementation of Extended Kalman Filter for sequential orbit determination and a case study for onboard application
【24h】

A time-efficient implementation of Extended Kalman Filter for sequential orbit determination and a case study for onboard application

机译:用于顺序轨道确定的扩展卡尔曼滤波器的省时实现和机载应用案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Onboard orbit determination (OD) is often used in space missions, with which mission support can be partially accomplished autonomously, with less dependency on ground stations. In major Global Navigation Satellite Systems (GNSS), inter-satellite link is also an essential upgrade in the future generations. To serve for autonomous operation, sequential OD method is crucial to provide real-time or near real-time solutions. The Extended Kalman Filter (EKF) is an effective and convenient sequential estimator that is widely used in onboard application. The filter requires the solutions of state transition matrix (STM) and the process noise transition matrix, which are always obtained by numerical integration. However, numerically integrating the differential equations is a CPU intensive process and consumes a large portion of the time in EKF procedures. In this paper, we present an implementation that uses the analytical solutions of these transition matrices to replace the numerical calculations. This analytical implementation is demonstrated and verified using a fictitious constellation based on selected medium Earth orbit (MEO) and inclined Geosynchronous orbit (IGSO) satellites. We show that this implementation performs effectively and converges quickly, steadily and accurately in the presence of considerable errors in the initial values, measurements and force models. The filter is able to converge within 2-4 h of flight time in our simulation. The observation residual is consistent with simulated measurement error, which is about a few centimeters in our scenarios. Compared to results implemented with numerically integrated STM, the analytical implementation shows results with consistent accuracy, while it takes only about half the CPU time to filter a 10-day measurement series. The future possible extensions are also discussed to fit in various missions. (C) 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
机译:太空飞行中经常使用机载轨道确定(OD),通过这种方式,可以部分自主地完成任务支持,而对地面站的依赖则更少。在主要的全球导航卫星系统(GNSS)中,卫星间链接也是子孙后代的重要升级。为了服务于自主运行,顺序OD方法对于提供实时或近实时解决方案至关重要。扩展卡尔曼滤波器(EKF)是一种有效且方便的顺序估计器,已广泛应用于车载应用。滤波器需要状态转换矩阵(STM)和过程噪声转换矩阵的解,这些解总是通过数值积分获得的。但是,对微分方程进行数值积分是一个占用大量CPU的过程,并且在EKF过程中会花费大量时间。在本文中,我们提出了一种使用这些过渡矩阵的解析解代替数值计算的实现。使用基于选定的中地球轨道(MEO)和倾斜地球同步轨道(IGSO)卫星的虚拟星座图演示并验证了这种分析实现。我们表明,在初始值,测量值和力模型存在相当大的误差的情况下,该实现有效执行并迅速,稳定且准确地收敛。在我们的仿真中,滤波器能够在飞行时间的2-4小时内收敛。观测残差与模拟测量误差一致,在我们的方案中,该误差约为几厘米。与数字积分STM所实现的结果相比,分析实现显示的结果具有一致的准确性,而过滤10天的测量系列仅花费大约一半的CPU时间。还讨论了将来可能的扩展以适合各种任务。 (C)2018年COSPAR。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号