首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Anisotropic electrical and magnetic properties in grain-oriented Bi4Ti3O12-La0.5Sr0.5MnO3
【24h】

Anisotropic electrical and magnetic properties in grain-oriented Bi4Ti3O12-La0.5Sr0.5MnO3

机译:晶粒化Bi4Ti3O12-LA0.5SR0.5MNO3中的各向异性电气和磁性性能

获取原文
获取原文并翻译 | 示例
       

摘要

Aurivillius compounds have many fascinating properties such as ferroelectricity, magnetism, dielectricity, and piezoelectricity. Their structures and properties can be tuned flexibly, thus they have broad applications in FeRAM, spintronics, photocatalysts, capacitors, etc. We synthesized layer-inserted Aurivillius phase semiconducting Bi4Ti3O12-La0.5Sr0.5MnO3 (BIT-LSMO) nanoparticles by the hydrothermal method and subsequently obtained highly grain-oriented ceramics (Lotgering factor LF = 98.69% for muffle calcined samples and 99.87% for hot-pressed samples) by calcination. Significant electrical anisotropy at room temperature (the resistivity magnitude of the out-of-plane direction is about an order larger than that of the in-plane direction) and magnetic anisotropy at low temperature in the oriented ceramics were observed. Through the grain boundary conductivity estimation with the brick layer mode, we concluded that the anisotropy originates from the anisotropy within grain interiors for the Aurivillius layered structure rather than the contribution of grain boundary density difference. The transport path is blocked to some extent along the c-direction since hole hopping through the Mn4+-O2--Mn3+ double exchange effect is the main conducting mechanism in our samples. The oxygen vacancies and element valence states of samples using different synthesis processes were investigated. The oxygen vacancies increase and the lattice shrinks during the sintering process due to the volatilization of bismuth element. The valence state of Ti is less than but near to +4, and the valence state of Mn is about +3.4. The electrical and magnetic anisotropies in BIT-LSMO provide an additional freedom in functional applications for layered complex oxides.
机译:Aurivillius化合物具有许多迷人的性质,例如铁电,磁性,介电和压电性。它们的结构和性能可以灵活地调节,因此它们在Feram,闪光灯,光催化剂,电容器等中具有广泛的应用。我们通过水热法合成了层插入的Aurivillius相半导体Bi4Ti3O12-La0.5SR0.5mNO3(位-Lsmo)纳米颗粒随后通过煅烧获得高度晶粒导向的陶瓷(润色剂量LF = 98.69%的Muffle煅烧样品和99.87%的热压样品)。在室温下的显着电各向异性(平面外方向的电阻率大约大于面内方向上的顺序),并且在取向陶瓷中低温下的磁各向异性。通过用砖层模式的晶界电导率估计,我们得出结论,各向异性源自Aurivillius分层结构的晶粒间片内的各向异性,而不是晶界密度差的贡献。由于跳过通过MN4 + -O2 - MN3 +双交换效果的孔跳跃,传送路径在一定程度上被阻塞到一定程度上,这是我们样品中的主要导电机构。研究了使用不同合成方法的样品的氧空位和元素价值态。由于铋元件的挥发,氧气空位增加,并且晶格在烧结过程中收缩。 Ti的价态小于但接近+4,Mn的价达约为+ 3.4。位LSMO中的电气和磁各向异性提供了用于层状复合氧化物的功能应用的额外自由度。

著录项

  • 来源
  • 作者单位

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Natl Synchrotron Radiat Lab Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号