...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >The synthesis of second-order nonlinear optical chromophores with conjugated steric hindrance for electro-optics at 850 nm
【24h】

The synthesis of second-order nonlinear optical chromophores with conjugated steric hindrance for electro-optics at 850 nm

机译:在850nm处具有缀合的空间障碍的二阶非线性光学色影的合成

获取原文
获取原文并翻译 | 示例
           

摘要

Electro-optic materials at the shortwave infrared window (850 nm) is significant for optical modulation in free-space communication and short-distance local area networks. However, most of the current high-performance organic nonlinear optical chromophores (absorption bandgap similar to 1.5 eV) are designed for operating at 1310 nm (O band) or 1550 nm (C band) and do not exhibit optical transparency at 850 nm (bandgap similar to 1.45 eV). The design and synthesis of chromophores exhibiting optical transparency at 850 nm are more challenging because regular bandgap engineering to improve microcroscopic nonlinearity (mu beta value) might not be available due to the bandgap restriction (optical transparency) at 850 nm. In this respect, this manuscript utilizes the strategy of suitable site-isolation in molecular engineering to optimize the comprehensive performance of chromophores for electro-optics at 850 nm. Vilsmeier formylation has been facilitated on symmetric or asymmetric donor-pi-donor intermediate dyes to form donor-pi-acceptor (D-pi-A) chromophores C1 and C2 with tunable conjugated steric hindrance (a site-isolator). Without significant red-shifts in the absorption spectra, conjugated steric hindrance groups contribute to large enhancement in the mu beta values of the chromophores and ensure optical transparency at 850 nm. The mu beta values of C1 (6706 x 10(-48)esu) and C2 (7279 x 10(-48)esu) with conjugated site-isolation groups are much higher than that of previously reported chromophores at 850 nm. The structure-property relationship reveals that a suitable site-isolator is extremely significant for realizing highly efficient translation of microscopic hyperpolarizability into macroscopic electro-optic coefficients. As a result, an electro-optic coefficient of 94 pm V(-1)at 830 nm was achieved. To the best of our knowledge, this is the highest value for organic electro-optic materials at 850 nm.
机译:短波红外窗口(850nm)的电光材料对于自由空间通信和短距离局域网中的光学调制很重要。然而,大多数当前的高性能有机非线性光学色影(吸收带隙类似于1.5 eV),用于在1310nm(o频带)或1550nm(c波段)下操作,并且在850nm处没有表现出光学透明度(带隙类似于1.45 ev)。在850nm处表现出光学透明度的发色团的设计和合成更具挑战性,因为由于850nm的带隙限制(光学透明度),可能无法提供常规带隙工程。在这方面,该稿件利用了分子工程中合适的部位隔离策略,优化了850nm的电光发色团的综合性能。已经促进了对称或不对称供体-PI-供体中间染料的vilsmeier甲型化,以形成供体 - Pi-Acceptor(D-PI-A)发色团C1和C2,具有可调谐共轭的空间障碍(位点隔离器)。在吸收光谱中没有显着的红移,缀合的空间障碍组在发色团的MUβ值中有助于大量增强,并确保850nm处的光学透明度。 C1的MUβ值(6706×10(-48)eSU)和C2(7279×10(-48)ESU)具有共轭部位隔离基团的高于850nm的先前报告的发色团的ESU。结构 - 性质关系表明,合适的位点隔离器非常重要,用于实现微观超极化性的高效平移到宏观电光系数。结果,实现了在830nm处的94pm V(-1)的电光系数。据我们所知,这是850nm的有机电光材料的最高值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号