首页> 外文期刊>Journal of Materials Chemistry, B. materials for biology and medicine >The crossing and integration between microfluidic technology and 3D printing for organ-on-chips
【24h】

The crossing and integration between microfluidic technology and 3D printing for organ-on-chips

机译:微流体技术与器官芯片三维印刷的交叉与集成

获取原文
获取原文并翻译 | 示例
       

摘要

Organ-on-chips were designed to simulate the real tissue or organ microenvironment by precise control of the cells, the extracellular matrix and other micro-environmental factors to clarify physiological or pathological mechanisms. The organ chip is mainly based on the poly(dimethylsiloxane) (PDMS) microfluidic devices, whereas the conventional soft lithography requires a cumbersome manufacturing process, and the complex on-chip tissue or organ chip also depends on the complicated loading process of the cells and biomaterials. 3D printing can efficiently design and automatically print micrometre-scale devices, while bio-printing can also precisely manipulate cells and biomaterials to create complex organ or tissue structures. In recent years, the popularization of 3D printing has provided more possibilities for its application to 3D printed organ-on-chips. The combination of 3D printing and microfluidic technology in organ-on-chips provides a more efficient choice for building complex flow channels or chambers, as well as the ability to create biological structures with a 3D cell distribution, heterogeneity and tissue-specific function. The fabrication of complex, heterogeneous 3D printable biomaterials based on microfluidics also provides new assistance for building complex organ-on-chips. Here, we discuss the recent advances and potential applications of 3D printing in combination with microfluidics to organ-on-chips and provide outlooks on the integration of the two technologies in building efficient, automated, modularly integrated, and customizable organ-on-chips.
机译:设计器芯片被设计为通过精确控制细胞,细胞外基质和其他微环境因素来模拟真实组织或器官微环境,以阐明生理或病理机制。器官芯片主要基于聚(二甲基硅氧烷)(PDMS)微流体装置,而传统的软光刻需要麻烦的制造过程,并且复合片上组织或器官芯片还取决于细胞的复杂负载过程和生物材料。 3D打印可以有效地设计和自动打印微米级设备,而生物印刷也可以精确地操纵细胞和生物材料以产生复杂的器官或组织结构。近年来,3D印刷的普及提供了更多的应用,以适应3D印刷器官芯片。 3D打印和微流体技术在器官芯片中的组合为构建复杂的流动通道或腔室提供了更有效的选择,以及创造具有3D细胞分布,异质性和特定功能的生物结构的能力。基于微流体的复合物的非均相3D可印刷生物材料的制造还提供了用于构建复杂的器官芯片的新辅助。在这里,我们讨论了3D打印与微流体的最新进展和潜在应用与器官芯片,并在建立高效,自动化,模块化集成和可定制的器官芯片中集成了两种技术的一体化。

著录项

  • 来源
  • 作者单位

    Biomanufacturing Engineering Laboratory Advanced Manufacturing Division Graduate School at Shenzhen Tsinghua University Shenzhen P. R. China;

    Biomanufacturing Engineering Laboratory Advanced Manufacturing Division Graduate School at Shenzhen Tsinghua University Shenzhen P. R. China;

    Biomanufacturing Engineering Laboratory Advanced Manufacturing Division Graduate School at Shenzhen Tsinghua University Shenzhen P. R. China;

    Biomanufacturing Engineering Laboratory Advanced Manufacturing Division Graduate School at Shenzhen Tsinghua University Shenzhen P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分析化学;
  • 关键词

  • 入库时间 2022-08-20 09:39:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号