...
首页> 外文期刊>Journal of micro and nano manufacturing >Method for Attaining Dimensionally Accurate Conditions for High-Resolution Three-Dimensional Printing Ceramic Composite Structures Using MicroCLIP Process
【24h】

Method for Attaining Dimensionally Accurate Conditions for High-Resolution Three-Dimensional Printing Ceramic Composite Structures Using MicroCLIP Process

机译:使用微液加工获得高分辨率三维印刷陶瓷复合结构的尺寸准确条件的方法

获取原文
获取原文并翻译 | 示例

摘要

Continuous liquid interface production (CLIP) utilizes projection ultraviolet (UV) light and oxygen inhibition to transform the sequential layered three-dimensional (3D) manufacturing into a continuous fabrication flow with tremendous improved fabrication speed and structure integrity. Incorporating ceramic particles to the photo-curable polymers allows for additive manufacturing of ceramic parts featuring sophisticated geometries, mitigating the difficulties associated with traditional manufacturing processes. The presence of ceramic particles within the ink, however, strongly scatters the incident UV light. In the high-resolution CLIP (microCLIP) process, the scattering effect can significantly alter the process characteristics, resulting in broadening of lateral feature dimensions alongside curing depth reduction. Varying exposure conditions to accommodate scattering additionally affects the oxygen deadzone thickness (DZ), which is dependent on power of incident light. This introduces a systematic defocusing error for large deadzone thickness to further complicate process control, such as the unwanted narrowing of part features. In this work, we developed a systematic framework for process optimization by balancing those effects via experimental characterization. We showed that the reported method can provide a set of optimal process parameters (UV power and stage speed) for high-resolution 3D fabrication in accommodating the distinct characteristics of given photo-curable ceramic ink. The method to optimize process parameter was validated experimentally via fabricating a gradient index Luneburg lens comprising densely packed woodpile building-blocks with a strut width of 100 μm and a layer thickness of 60 μm using microCLIP at dimensionally accurate exposure conditions.
机译:连续液体界面制造(夹子)利用投影紫外线(UV)光和氧抑制以将顺序层三维(3D)制造变换成连续的制造流量,具有巨大的改进的制造速度和结构完整性。将陶瓷颗粒掺入光固化聚合物允许具有精密几何形状的陶瓷部件的添加剂制造,减轻与传统制造工艺相关的困难。然而,墨水内的陶瓷颗粒的存在强烈地散射了入射的UV光。在高分辨率夹(Microclip)工艺中,散射效果可以显着改变过程特性,导致横向特征尺寸的宽度降低,导致横向特征尺寸。改变曝光条件以适应散射的另外影响氧气沉降件厚度(DZ),这取决于入射光的功率。这引入了大型Deadone厚度的系统散焦误差,以进一步复杂化过程控制,例如不需要的部分特征缩小。在这项工作中,我们通过通过实验表征平衡这些效果来开发了一个系统优化的系统框架。我们认为,报告的方法可以为高分辨率3D制造提供一组最佳过程参数(UV功率和级速度),其在适应给定的可光固化陶瓷油墨的不同特性方面。通过制造梯度指数Luneburg透镜通过制造梯度指数Luneburg镜片来验证优化工艺参数的方法,该梯度指数持有较密集的覆盖型木材构建块,其在尺寸精确地暴露条件下使用微液的支柱宽度为100μm的层厚度为60μm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号