...
首页> 外文期刊>Biotechnology Progress >C.botulinum Inactivation Kinetics Implemented in a Computational Model of a High-Pressure Sterilization Process
【24h】

C.botulinum Inactivation Kinetics Implemented in a Computational Model of a High-Pressure Sterilization Process

机译:高压灭菌过程计算模型中的肉毒梭菌灭活动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High-pressure,high-temperature(HPHT)processing is effective for microbial spore inactivation using mild preheating,followed by rapid volumetric compression heating and cooling on pressure release,enabling much shorter processing times than conventional thermal processing for many food products.A computational thermal fluid dynamic(CTFD)model has been developed to model all processing steps,including the vertical pressure vessel,an internal polymeric carrier,and food packages in an axis-symmetric geometry.Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C.botulinum;the traditional first-order kinetic model,the Weibull model,an nth-order model,and a combined discrete log-linear nth-order model.The models were solved to compare the resulting microbial inactivation distributions.The initial temperature of the system was set to 90°C and pressure was selected at 600 MPa,holding for 220 s,with a target temperature of 121°C.A representation of the extent of microbial inactivation throughout all processing steps was obtained for each microbial model.Comparison of the models showed that the conventional thermal processing kinetics(not accounting for pressure)required shorter holding times to achieve a 12D reduction of C.botulinum spores than the other models.The temperature distribution inside the vessel resulted in a more uniform inactivation distribution when using a Weibull or an nth-order kinetics model than when using log-linear kinetics.The CTFD platform could illustrate the inactivation extent and uniformity provided by the microbial models.The platform is expected to be useful to evaluate models fitted into new C.botulinum inactivation data at varying conditions of pressure and temperature,as an aid for regulatory filing of the technology as well as in process and equipment design.
机译:高压,高温(HPHT)处理可通过温和的预热来有效地灭活微生物孢子,其次是快速的体积压缩加热和降压冷却,从而使许多食品的处理时间比常规热处理要短得多。开发了流体动力学(CTFD)模型以对所有处理步骤进行建模,包括轴对称几何形状的垂直压力容器,内部聚合物载体和食品包装。传热和流体动力学方程式与四个选定的动力学模型耦合肉毒梭菌的灭活;传统的一阶动力学模型,Weibull模型,n阶模型以及组合的离散对数线性n阶模型。求解了这些模型以比较最终的微生物灭活分布。系统的初始温度设置为90°C,压力选择为600 MPa,保持220 s,目标温度为121°CA每个微生物模型都获得了整个工艺步骤中微生物灭活的程度的模型。模型的比较表明,传统的热处理动力学(不考虑压力)需要更短的保持时间才能比肉毒梭菌孢子减少12D。使用Weibull或n阶动力学模型时,与使用对数线性动力学模型相比,容器内部的温度分布导致更均匀的灭活分布.CTFD平台可以说明微生物提供的灭活程度和均匀性。该平台有望在变化的压力和温度条件下评估适用于新的肉毒梭菌灭活数据的模型,以帮助该技术的法规备案以及过程和设备设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号