首页> 外文期刊>Food and bioprocess technology >A Gompertz Model Approach to Microbial Inactivation Kinetics by High-Pressure Processing Incorporating the Initial Counts, Microbial Quantification Limit, and Come-Up Time Effects
【24h】

A Gompertz Model Approach to Microbial Inactivation Kinetics by High-Pressure Processing Incorporating the Initial Counts, Microbial Quantification Limit, and Come-Up Time Effects

机译:一种初始计数,微生物量化极限和上升时间效应的高压处理的微生物灭活动力学的Gompertz模型方法

获取原文
获取原文并翻译 | 示例
           

摘要

During come-up time (CUT), the time to reach a desired processing pressure, isobaric-isothermal conditions cannot be assumed in the estimation of kinetic parameters for the design of commercial high-pressure processing (HPP) treatments. Since CUT effects on microbial population, enzyme activity, and chemical concentration are often ignored, kinetic models incorporating the non-isobaric and non-isothermal conditions prevailing during CUT were the objective of this work. The analysis of peer-reviewed data on the HPP inactivation of bacteria (counts observations n = 919, 60 survival curves) and bacterial spores (n = 273, 12 curves) showed that a Gompertz model (GMPZ) approach is an effective alternative. The GMPZ parameter A was fixed as the difference between the initial population (log(10) N (o) ) and the lower quantification limit of microbial counts (log(10) N (lim)), while exponential equations were used to describe pressure effects on the lag time (lambda) and the maximum inactivation rate (mu(max)). In low-acid media (pH > 4.5), lambda decreased exponentially with pressure, allowing the identification of a theoretical pressure level (P (lambda)) sufficient to initiate microbial inactivation during CUT. The parameter mu(max) exponentially increased with pressure for all evaluated datasets. Dynamic pressure effects during CUT were simplified by assuming isobaric conditions during CUT (t (CUT)), allowing to obtain GMPZ parameter estimates using only nonlinear regression (R (2) similar to 0.938, sigma (2) = 0.030-0.604). The proposed approach is a simpler, promising tool for a more informative analysis of the kinetics of microbial inactivation by HPP and should be further validated with additional experimental data.
机译:在上升时间(切割)期间,在估计商业高压处理(HPP)处理的动力学参数估计中,不能假设达到所需加工压力的时间,等温条件。由于通常忽略对微生物种群,酶活性和化学浓度的影响,因此含有在切割过程中持续的非异常和非等温条件的动力学模型是这项工作的目的。对细菌的HPP灭活的同行评审数据(计数观察N = 919,60存活曲线)和细菌孢子(n = 273,12曲线)的分析表明,Gompertz模型(GMPZ)方法是有效的替代方案。 GMPZ参数A被固定为初始群体(LOG(10)N(O)之间的差异和微生物计数的较低量化极限(LOG(10)N(LIM)),而指数方程用于描述压力对滞后时间(Lambda)的影响和最大灭活率(MU(MU)。在低酸培养基(pH> 4.5)中,λ用压力指数下降,允许鉴定足以在切割期间引发微生物灭活的理论压力水平(p(λ))。对于所有评估数据集的压力,参数mu(max)指数增加。通过在切割期间(T(切割))在切割条件(T(切割))中简化了切割过程中的动态压力效应,允许仅使用非线性回归(R(2)类似于0.938,Sigma(2)= 0.030-0.604)获得GMPZ参数估计。所提出的方法是一种更简单,有前途的工具,用于更具信息性的,用于通过HPP进行微生物失活动力学,并应进一步用另外的实验数据进行进一步验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号