首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Fully Dynamic Spontaneous Rupture Due to Quasi-Static Pore Pressure and Poroelastic Effects: An Implicit Nonlinear Computational Model of Fluid-Induced Seismic Events
【24h】

Fully Dynamic Spontaneous Rupture Due to Quasi-Static Pore Pressure and Poroelastic Effects: An Implicit Nonlinear Computational Model of Fluid-Induced Seismic Events

机译:由于准静态孔隙压力和多孔弹性效应,完全动态的自发破裂:流体诱导地震事件的隐含非线性计算模型

获取原文
获取原文并翻译 | 示例
       

摘要

Fluid perturbations play a pivotal role in triggering earthquakes. However, the role of fluid in the coseismic rupture process remains largely unknown. To this end, we develop a 2-D fully dynamic spontaneous rupture model for fluid-induced earthquakes. The effect of fluid in the preseismic quasi-static regime is modeled as either pore pressure diffusion or fully coupled poroelasticity, using our Jin and Zoback (2017, ) computational model. The two approaches lead to radically different predictions on the time of earthquake nucleation. Correspondingly, the evolved fluid pressure or poroelastic stress on the fault, together with the spatially altered density of the fluid-saturated hosting rock, is passed to the dynamic regime. Under the assumption of an undrained coseismic fluid-solid system, we discretize the fully dynamic Cauchy equation of motion subjected to an exact fault contact constraint using a split-node finite element method in space and an implicit Newmark family finite difference method in time. Within each time step, a fully implicit Newton-Raphson scheme is implemented iteratively for linearizing the fully discrete equations. Within each Newton iteration, a physics-based and nonstationary preconditioner is designed to accelerate the convergence of the selected generalized minimal residual method iterative linear solver. The effect of fluid is highlighted throughout the discretization and computational procedures. Finally, by conducting a numerical experiment, we illustrate that a fully coupled poroelastic model can lead to significantly different predictions on coseismic rupture behaviors and wavefields compared to a decoupled model. Our computational model can also serve as one of the earliest full-physics modeling tool for fluid-induced earthquakes.
机译:液体扰动在触发地震中起着枢轴作用。然而,液体在电动发电机破裂过程中的作用仍然很大程度上是未知的。为此,我们开发了一种用于流体诱导地震的2-D全动态自发性破裂模型。使用我们的Jin和Zoback(2017,)计算模型,流体在沉重的准静态环境中的影响被建模为孔隙压力扩散或完全耦合的腹弹性。两种方法导致地震成核时的完全不同的预测。相应地,对故障的进化流体压力或多孔弹性应力与流体饱和托管岩的空间改变的密度一起传递到动态状态。在不推迟的电动发电机液固体系统的假设下,我们将在空间中的分裂节点有限元方法和隐式纽马克家庭有限差分方法中的分裂节点有限元方法离散地进行精确故障接触约束的全动态Cauchy方程。在每个时间步骤中,迭代地实现完全隐式的牛顿Raphson方案,用于线性化完全离散的方程。在每个牛顿迭代中,基于物理和非间抗预处理器旨在加速所选广义最小残留方法迭代线性求解器的收敛性。在整个离散化和计算过程中强调了流体的影响。最后,通过进行数值实验,我们说明与解耦模型相比,完全耦合的孔弹性模型可以导致对电影发生破裂行为和波场的显着不同的预测。我们的计算模型也可以作为流体诱导地震的最早全物理建模工具之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号