首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >A 3-D Shear Velocity Model of the Crust and Uppermost Mantle Beneath Alaska Including Apparent Radial Anisotropy
【24h】

A 3-D Shear Velocity Model of the Crust and Uppermost Mantle Beneath Alaska Including Apparent Radial Anisotropy

机译:阿拉斯加下面的地壳和最上面地幔的三维剪切速度模型,包括明显的径向各向异性

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a model of the 3-D shear velocity structure of the crust and uppermost mantle beneath Alaska and its surroundings on a ~50-km grid, including crustal and mantle radial anisotropy, based on seismic data recorded at more than 500 broadband stations. The model derives from a Bayesian Monte Carlo inversion of Rayleigh wave group and phase speeds and Love wave phase speeds determined from ambient noise and earthquake data. Prominent features resolved in the model include the following: (1) Apparent crustal radial anisotropy is strongest across the parts of central and northern Alaska that were subjected to significant extension during the Cretaceous. This is consistent with crustal anisotropy being caused by deformationally aligned middle to lower crustal sheet silicates (micas) with shallowly dipping foliation planes beneath extensional domains. (2) Crustal thickness estimates are similar to those from receiver functions by Miller and Moresi (2018, https://doi.org/10.1785/0220180222). (3) Very thick lithosphere underlies Arctic-Alaska, with high shear wave speeds that extend at least to 120-km depth, which may challenge rotational transport models for the evolution of the region. (4) Subducting lithosphere beneath Alaska is resolved, including what we call the "Barren Islands slab anomaly," an "aseismic slab edge" north of the Denali Volcanic Gap, the "Wrangellia slab anomaly," and Yakutat lithosphere subducting seaward of the Wrangell volcanic field. (5) The geometry of the Alaskan subduction zone generally agrees with the slab model Alaska_3D 1.0 of Jadamec and Billen (2010, https://doi.org/10.1038/nature09053) except for the Yakutat "slab shoulder region," which is newly imaged in our model.
机译:本文介绍了阿拉斯加下面的外壳和最上面的地幔的3-D剪切速度结构的模型及其周围环境,包括在〜50公里网格上,包括地壳和地幔径向各向异性,基于在500多个宽带站记录的地震数据。该模型源于瑞利波组的贝叶斯蒙特卡罗反转,以及从环境噪声和地震数据确定的相位速度和热波相速度。在模型中解决的突出特征包括以下内容:(1)表观地壳径向各向异性在中央和北阿拉斯加北部的部分中最强,在白垩纪期间受到显着的延伸。这与地壳各向异性是一致的,通过在延伸域下的浅层浸渍叶片下降叶片(MICAS)中的中间地壳硅酸盐(云母)引起的地壳各向异性。 (2)地壳厚度估计与米勒和莫里斯队(2018,HTTPS://Doi.org/10.1785/0220180222)类似于来自接收器功能的地壳厚度估计。 (3)非常厚的岩石圈下潜北极 - 阿拉斯加,具有至少延伸至120公里深度的高剪切波速,这可能挑战该区域的演变的旋转传输模型。 (4)在阿拉斯加下方的岩石圈进行了解决,包括我们称之为“荒岛板块异常”的“荒谬的平板边缘”北北部的“荒谬的平板边缘”,“Wrangellia平板异常”,“Wrangellia平板异常”,和雅虎岩石过滤的Wrangell海洋火山场。 (5)阿拉斯加俯冲区的几何形状通常与Jadamec和Billen的Slab Model(2010,Https://Doi.org/10.1038/nature09053)除以yakutat“板坯肩部”,这是新的在我们的模型中成像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号