...
首页> 外文期刊>Journal of geophysical research. Planets >Simulation of Lunar Soil With Irregularly Shaped, Crushable Grains: Effects of Grain Shapes on the Mechanical Behaviors
【24h】

Simulation of Lunar Soil With Irregularly Shaped, Crushable Grains: Effects of Grain Shapes on the Mechanical Behaviors

机译:用不规则形状的抵碎谷物模拟月球土壤:晶粒形状对机械行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

One of the challenges to overcome in Moon mining operations, such as soil handling, drilling, excavation, and wheeled movement, is understanding the mechanical behaviors of lunar soil, which is composed of grains characterized by highly irregular shapes. The impracticality of performing mechanical experiments on lunar soil samples has made computational techniques useful for exploring the mechanical behaviors of lunar soil. This paper uses particle flow code and describes a procedure for simulating lunar soil grains with specific size, shape, and strength distributions. We adopt data from soil samples 64501 and 60501 retrieved in Apollo 16. Lunar soil samples are simulated as assemblies of different shapes of grains consisting of rigid spheres connected through parallel bonds. We classify grains into four categories based on their shape: agglutinate, breccia A, breccia B, and plagioclase. We simulate each grain based on available imaging studies on their shape characteristics. We reveal the significance of grain shape irregularity through angle-of-repose tests on samples with and without irregularly shaped agglutinates. Results show that the shape irregularity increases the angle of repose by 6°. We repeat the test under different gravitational acceleration ranging from 0.1 to 25 m/s~2 and show that for values below about 10 m/s~2, the angle of repose is inversely related to the gravity but above 10 m/s~2, remains independent of the gravity. We perform triaxial compression tests to investigate behaviors of simulated samples under confined loadings. The confinement varies from zero to 15 kPa, corresponding to the lateral in situ stress at depths up to 250 cm. The cohesion and friction angle derived from the triaxial tests are shown to agree with the lab and in situ measurements. This numerical practice and presented methodology pave the way for full-scale simulation of mining operations on the Moon surface.
机译:在月球挖掘操作中克服的挑战之一,如土壤处理,钻井,挖掘和轮式运动,是理解月球土壤的机械行为,它由具有高度不规则形状的颗粒构成。对月球土壤样品进行机械实验的不切实性使得计算技术可用于探索月球土壤的机械行为。本文使用粒子流代码,并描述了用于模拟具有特定尺寸,形状和强度分布的月球土壤的过程。我们采用来自Apollo 16501和60501的土壤样品64501和60501的数据。月球土壤样品被模拟为不同形状的谷物组件,包括通过平行键连接的刚性球体组成。我们根据其形状将谷物分为四个类别:凝集,Breccia A,Breccia B和Plagioclase。我们根据可用的成像研究模拟每个谷物对其形状特性。我们通过在具有和不具有不规则形状的凝集物的样品上的样品上的recose试验揭示晶粒形状不规则性的重要性。结果表明,形状不规则性增加了6°的休息角。我们在不同的重力加速度下重复测试,从0.1到25 m / s〜2,显示出于低于约10 m / s〜2的值,休息角与重力相反,但高于10 m / s〜2 ,保持独立于重力。我们执行三轴压缩测试以调查限制负荷下模拟样本的行为。该限制从零到15kPa变化,对应于横向的原位应力,深度高达250厘米。从三轴试验中衍生的凝聚力和摩擦角度显示与实验室和原位测量同意。这种数值实践和呈现的方法铺平了用于在月球表面上的采矿操作的全面模拟的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号