...
首页> 外文期刊>Journal of Fluids and Structures >Numerical simulation of underwater explosion wave propagation in water-solid-air/water system using ghost fluid/solid method
【24h】

Numerical simulation of underwater explosion wave propagation in water-solid-air/water system using ghost fluid/solid method

机译:利用鬼液/固体方法水固空气/水系统水下爆炸波传播的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The analysis of deformations of structures immersed in water due to explosion waves is important for off-shore oil and marine applications. A challenging issue in these problems is the satisfaction of continuity conditions at the fluid/structure interface. We numerically analyze these transient problems by using the ghost fluid/solid method, and coupling the isobaric fixing technique with the real ghost fluid method. We verify accuracy of the developed algorithm by comparing predictions from it with the analytical solution for a one-dimensional problem in which a plane wave traveling in water impinges upon a water/solid interface. We show that the coupled method has first order accuracy. Numerical results for the propagation of a spherical wave interacting with a fluid/solid interface computed with the developed method are found to compare well with those from the commercial software, ANSYS, that uses the arbitrary Eulerian-Lagrangian method. It is found that the intensity of the reflected tensile wave at a solid/water interface is less than that at a solid/air interface. Factors motivating this work include (i) using only the finite difference method for numerically solving equations governing transient deformations of fluids and solids that employs the ghost fluid/solid method to accurately satisfy continuity conditions at the fluid-solid interface, (ii) avoiding the need to refine the grid near the fluid-solid interface, and (iii) having an in-house capability of modeling detonation of a charge and study the interaction of the shock wave produced with the deformable structure. A novelty of the work is that the pressure due to a shock wave is not modeled as the product of a function of time and a function of space coordinates but its spatial and temporal dependence is found by solving the fluid-structure interaction problem. (C) 2019 Elsevier Ltd. All rights reserved.
机译:由于爆炸波浸入水中浸入水中的结构变形对于离岸油和海洋应用来说是重要的。在这些问题中有挑战性的问题是流体/结构界面的连续性条件满意。我们通过使用幽灵液/固体方法来数值分析这些瞬态问题,并用真正的幽灵液法耦合等异质固定技术。我们通过将来自IT的预测与分析解决方案进行比较,用于验证开发算法的准确性,该分析解决方案在水中行驶的平面波在水/固体界面上冲击。我们表明耦合方法具有一级精度。发现与开发方法计算的流体/固体界面相互作用的球形波传播的数值结果与商业软件,ANSYS,使用任意欧洲拉格朗日方法的方法相比。发现固体/水界面处的反射拉伸波的强度小于固体/空气界面的强度。激励该工作的因素包括(i)仅使用用于使用鬼液/固体方法的瞬态变形的数值求解的数值求解的有限差分方法,该方程式用于采用鬼液/固体方法,以准确地满足流体 - 固体界面的连续性条件,(ii)避免需要优化流体固体界面附近的网格,(iii)具有建模电荷的爆炸和研究用可变形结构产生的冲击波的相互作用的内部能力。作品的新颖之处在于由于冲击波引起的压力不是模拟作为时间函数的乘积和空间坐标的函数,但通过求解流体结构相互作用问题,发现其空间和时间依赖性。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号