首页> 外文期刊>Journal of Fluids and Structures >Extension of the Non-Linear Harmonic method for the study of the dynamic aeroelasticity of horizontal axis wind turbines
【24h】

Extension of the Non-Linear Harmonic method for the study of the dynamic aeroelasticity of horizontal axis wind turbines

机译:横向轴线风力涡轮机动态空气弹性研究的非线性谐波法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper an innovative methodology for the study of horizontal axis wind turbines dynamic aeroelasticity is presented. It can be understood as an extension of the Non-Linear Harmonic (NLH) method, an efficient computational approach for the analysis of unsteady periodic flows. A linearized model of the structure consisting of a set of mode shapes and natural frequencies was included. The aeroelastic equilibrium was ensured through a set of equations linking the structural displacements and the fluid loads for both the time averaged and the harmonic contributions. First, the developed methodology is tested in the framework of a 2D cylinder mounted on a single degree of freedom elastic system and undergoing Vortex Induced Vibrations (VIV). The results are compared with previous experimental and computational studies, revealing the potential of the method for the prediction of both the shedding frequency and the aeroelastic response. Secondly, the dynamic aeroelasticity of the complete DTU 10MW RWT wind turbine (i.e. including the tower) is assessed. A nominal operating point is studied, and the rotor flexibility is considered via a blade structural model. The results of this Fluid-Structure Interaction (FSI) simulation are compared with two additional computations, both assuming rigid blades, that modeled the isolated DTU 10MW RWT rotor and the complete machine. This allowed to distinguish the impact of the blade flexibility on the rotor performance from the potential effects associated to the presence of the tower. In particular, the consideration of the aeroelasticity led to a decrease of the predicted time-averaged rotor loads and the corresponding amplitudes of oscillation. For its application on the DTU 10MW RWT, the developed methodology was found to be one order of magnitude faster than a standard time marching approach. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文介绍了一种创新的横轴风力涡轮机动态空气弹性的创新方法。它可以理解为非线性谐波(NLH)方法的延伸,一种有效的计算方法,用于分析不稳定的周期性流量。包括由一组模式形状和自然频率组成的结构的线性化模型。通过将结构位移的一组方程和用于谐波贡献的时间和谐波贡献连接的一组方程,通过一组方程来确保空气弹性平衡。首先,在安装在单一自由度弹性系统的2D圆柱体的框架中测试了开发的方法,并且经历了涡流诱导的振动(VIV)。将结果与先前的实验和计算研究进行了比较,揭示了预测脱落频率和空气弹性响应的方法的潜力。其次,评估完整DTU 10MW RWT风力涡轮机(即包括塔)的动态空气弹性。研究了标称操作点,通过刀片结构模型考虑转子柔性。这种流体结构相互作用(FSI)仿真的结果与假设刚性刀片的两个额外计算进行了比较,这是模拟隔离的DTU 10MW RWT转子和完整机器的刚性刀片。这允许将叶片灵活性的影响与与塔的存在相关的潜在效果区分对转子性能的影响。特别地,对空气弹性的考虑导致预测的时间平均转子负载的降低和相应的振荡幅度。对于其在DTU 10MW RWT上的应用,发现发达的方法是比标准时间行进方法更快的一个数量级。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号