...
首页> 外文期刊>Biotechnology and Bioengineering >Zonal Rate Model for Axial and Radial Flow Membrane Chromatography, Part II: Model-Based Scale-Up
【24h】

Zonal Rate Model for Axial and Radial Flow Membrane Chromatography, Part II: Model-Based Scale-Up

机译:轴向和径向流膜色谱的区域速率模型,第二部分:基于模型的放大

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Membrane chromatography (MC) systems are finding increasing use in downstream processing trains for therapeutic proteins due to the unique mass-transfer characteristics they provide. As a result, there is increased need for model-based methods to scale-up MC units using data collected on a scaled-down unit. Here, a strategy is presented for MC unit scale-up using the zonal rate model(ZRM). The ZRM partitions an MC unit into virtual flow zones to account for deviations from ideal plug-flow behavior. To permit scale-up, it is first configured for the specific device geometry and flow profiles within the scaleddown unit so as to achieve decoupling of flow and binding related non-idealities. The ZRM is then configured for the preparative-scale unit, which typically utilizes markedly different flow manifolds and membrane architecture. Breakthrough is first analyzed in both units under nonbinding conditions using an inexpensive tracer to independently determine unit geometry related parameters of the ZRM. Binding related parameters are then determined from breakthrough data on the scaled-down MC capsule to minimize sample requirements. Model-based scale-up may then be performed to predict band broadening and breakthrough curves on the preparative-scale unit. Here, the approach is shown to be valid when the Pall XT140 and XT5 capsules serve as the preparative and scaled-down units, respectively. In this case, scale-up is facilitated by our finding that the distribution of linear velocities through the membrane in the XT140 capsule is independent of the feed flow rate and the type of protein transmitted. Introduction of this finding into the ZRM permits quantitative predictions of breakthrough over a range of industrially relevant operating conditions.
机译:由于膜色谱(MC)系统具有独特的传质特性,因此在下游处理蛋白处理序列中的使用越来越广泛。结果,越来越需要基于模型的方法来使用在缩小的单元上收集的数据来放大MC单元。在这里,提出了一种使用区域速率模型(ZRM)放大MC单元的策略。 ZRM将MC单元划分为虚拟流动区域,以解决与理想推流行为的偏差。为了允许按比例放大,首先将其配置为按比例缩小单元内的特定设备几何形状和流量曲线,以实现流量的解耦和绑定相关的非理想性。然后将ZRM配置为制备级装置,该装置通常利用明显不同的流量歧管和膜结构。首先在非绑定条件下使用便宜的示踪剂在两个单元中分析突破,以独立确定ZRM的单元几何相关参数。然后从按比例缩小的MC胶囊上的突破数据确定结合相关参数,以最大程度地减少样品需求。然后可以执行基于模型的按比例放大,以预测制备级单位上的谱带展宽和穿透曲线。在这里,当颇尔XT140和XT5胶囊分别用作制备单位和按比例缩小的单位时,该方法被证明是有效的。在这种情况下,通过我们的发现,XT140胶囊中穿过膜的线速度分布与进料流速和传输的蛋白质类型无关,从而促进了放大。将这一发现引入ZRM可以定量预测在一系列与工业相关的操作条件下的突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号