首页> 外文期刊>Journal of Computational Physics >A hybrid fluid-kinetic model for hydrogenic atoms in the plasma edge of tokamaks based on a micro-macro decomposition of the kinetic equation
【24h】

A hybrid fluid-kinetic model for hydrogenic atoms in the plasma edge of tokamaks based on a micro-macro decomposition of the kinetic equation

机译:基于动力学方程微型微宏分解的托卡马克等离子体边缘中氢原子的混合液 - 动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

Monte Carlo (MC) simulations of the full kinetic equation for the neutral particles in the plasma edge become computationally costly for reactor-relevant regimes. To accelerate the simulations, we propose a hybrid fluid-kinetic approach that is based on a micro-macro decomposition of the kinetic equation. This leads to a macro/fluid model with kinetic corrections that follow from an MC simulation of the micro/kinetic part. We distinguish three hybrid models with different underlying fluid equations: (i) a pure pressure-diffusion equation with equal neutral and ion temperatures (T-n = T-i); (ii) a continuity and parallel momentum equation with pressure-diffusion transport retained in the directions perpendicular to the magnetic field lines, with T-n = T-i; and (iii) the same model as (ii), but with a separate neutral energy equation (T-n not equal Ti). To facilitate the future integration in more complete plasma edge codes, we neglect some kinetic correction terms. Hence, the hybrid model is not exactly equivalent to the full kinetic equation. We assess the hybrid performance on the basis of the reduction of the CPU time compared to an MC simulation of the full kinetic equation for the same statistical error on a certain plasma source. This is done for a high recycling slab case. Only the models with parallel momentum equation ((ii)-(iii)) are able to significantly reduce the CPU time. However, due to the incomplete kinetic corrections there is a remaining hybrid-kinetic discrepancy that mainly pops up in the ion energy source from the model with energy equation (iii). (C) 2020 Elsevier Inc. All rights reserved.
机译:对于反应堆相关的制度,等离子体边缘中中性粒子的全动力学方程的蒙特卡罗(MC)模拟变昂贵。为了加速模拟,我们提出了一种混合流体 - 动力学方法,其基于动力学方程的微宏分解。这导致宏/流体模型,其具有动力学校正,其从微/动力学部分的MC模拟中遵循。我们将三种混合模型与不同的底层流体方程区分开来:(i)具有等中性和离子温度(T-N = T-I)的纯压力扩散方程; (ii)具有在垂直于磁场线的方向上的压力扩散传输的连续性和平行动量方程,具有T-n = T-I; (iii)与(ii)相同的型号,但是具有单独的中性能量方程(T-n不等于ti)。为了促进更完整的等离子体边缘代码中未来的整合,我们忽略了一些动态校正项。因此,混合模型并不完全等于完整的动力学方程。我们基于对CPU时间的减少来评估混合性能,与在某一等离子体源上相同的统计误差的全动力学方程的MC模拟相比。这是为高回收平板外壳完成的。只有具有平行动量方程的模型((ii) - (iii))能够显着降低CPU时间。然而,由于不完全的动力学校正,存在剩余的混合动力学差异,其主要从具有能量方程(III)的模型中的离子能源中弹出。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号