首页> 外文期刊>Journal of Computational Physics >RANS turbulence model development using CFD-driven machine learning
【24h】

RANS turbulence model development using CFD-driven machine learning

机译:使用CFD驱动的机器学习rans湍流模型开发

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a novel CFD-driven machine learning framework to develop Reynolds-averaged Navier-Stokes (RANS) models. The CFD-driven training is an extension of the gene expression programming method Weatheritt and Sandberg (2016) [8], but crucially the fitness of candidate models is now evaluated by running RANS calculations in an integrated way, rather than using an algebraic function. Unlike other data-driven methods that fit the Reynolds stresses of trained models to high-fidelity data, the cost function for the CFD-driven training can be defined based on any flow feature from the CFD results. This extends the applicability of the method especially when the training data is limited. Furthermore, the resulting model, which is the one providing the most accurate CFD results at the end of the training, inherently shows good performance in RANS calculations. To demonstrate the potential of this new method, the CFD-driven machine learning approach is applied to model development for wake mixing in turbomachines. A new model is trained based on a high-pressure turbine case and then tested for three additional cases, all representative of modern turbine nozzles. Despite the geometric configurations and operating conditions being different among the cases, the predicted wake mixing profiles are significantly improved in all of these a posterioritests. Moreover, the model equation is explicitly given and available for analysis, thus it could be deduced that the enhanced wake prediction is predominantly due to the extra diffusion introduced by the CFD-driven model. (C) 2020 Elsevier Inc. All rights reserved.
机译:本文提出了一种新型CFD驱动的机器学习框架,用于开发Reynolds平均Navier-Stokes(RANS)模型。 CFD驱动的训练是基因表达编程方法的延伸静止,但是,现在通过以综合方式运行RAN计算而不是使用代数功能来评估候选模型的适应性。与将reynolds的培训模型的reynolds应力置于高保真数据不同,可以根据CFD结果的任何流特征来定义CFD驱动训练的成本函数。这延长了该方法的适用性,特别是当训练数据有限时。此外,由此产生的模型,这是在训练结束时提供最准确的CFD结果的模型,在RAN计算中固有地显示出良好的性能。为了证明这种新方法的潜力,CFD驱动的机器学习方法适用于涡轮机中唤醒混合的模型开发。一种新型型号是基于高压涡轮机的培训,然后测试了三种额外的情况,所有代表现代涡轮喷嘴。尽管在这种情况下,尽管几何配置和操作条件不同,但在所有这些后衰老症中,预测的唤醒混合型材在所有这些后部都显着提高。此外,明确地提供了模型方程,可用于分析,因此可以推导出增强的唤醒预测主要是由于CFD驱动模型引入的额外扩散。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号