首页> 外文期刊>Journal of Computational Physics >Unified gas-kinetic wave-particle methods I: Continuum and rarefied gas flow
【24h】

Unified gas-kinetic wave-particle methods I: Continuum and rarefied gas flow

机译:统一气体动力学波粒子方法I:连续核和稀薄气体流动

获取原文
获取原文并翻译 | 示例
           

摘要

The unified gas-kinetic scheme (UGKS) provides a framework for simulating multiscale transport with the updates of both gas distribution function and macroscopic flow variables on the cell size and time step scales. The multiscale dynamics in UGKS is achieved through the coupled particle transport and collision in the particle evolution process within a time step. In this paper, under the UGKS framework, we propose an efficient multiscale unified gas-kinetic wave-particle (UGKWP) method. The gas dynamics in UGKWP method is described by the individual particle movement coupled with the evolution of the probability density function (PDF). During a time step, the trajectories of simulation particles are tracked until collision happens, and the post-collision particles are evolved collectively through the evolution of the corresponding distribution function. The evolution of simulation particles and distribution function is guided by the evolution of macroscopic variables, and guarantees the conservation of the scheme in the final wave-particle formulation. A new concept of multiscale multi-efficiency preserving (MMP) method is introduced. Multiscale preserving means UGKWP method preserves the flow regime from collisionless regime to hydrodynamic regime without requiring the cell size and time step to be less than the mean free path and collision time. Multi-efficiency preserving means the computational cost of the scheme including the computational time and memory cost is on the same level as the most efficient method in the corresponding regime, such as the particle methods in the rarefied regime and hydrodynamic solvers in continuum regime. The UGKWP method is shown to satisfy the MMP requirement. The UGKWP method is specially efficient for hypersonic flow simulation in all regimes in comparison with the discrete ordinate methods, and presents a much lower stochastic noise in the continuum flow regime in comparison with the particle-based Monte Carlo methods. Numerical tests for flows over a wide range of Mach and Knudsen numbers are presented. The examples include the hypersonic flow passing a circular cylinder at Mach numbers 20 and 30 and Knudsen numbers 1 and 10(-4), low speed lid-driven cavity flow, laminar boundary layer, shock structure, and shock tube problems. These results validate the accuracy, efficiency, and multiscale and multi-efficiency property of UGKWP method. (C) 2019 Elsevier Inc. All rights reserved.
机译:统一的气体动力学方案(UGKS)提供了一种用于模拟多尺度传输的框架,其在单元格大小和时间步长上的气体分布函数和宏观流量变量的更新。通过在时间步骤中通过耦合粒子传输和粒子演化过程中的耦合粒子传输和碰撞来实现UGK中的多尺度动态。本文在UGKS框架下,我们提出了一种高效的多尺度统一气体动力学波粒子(UGKWP)方法。通过与概率密度函数(PDF)的演变耦合的各个颗粒运动来描述UGKWP方法中的气体动力学。在时间步骤中,跟踪模拟颗粒的轨迹直到发生碰撞,并且通过相应分配功能的演变共同地演化后碰撞后颗粒。模拟颗粒和分布函数的演变是由宏观变量的演变引导的,并保证在最终波形颗粒制剂中的方案的守恒。介绍了多尺度多效保存(MMP)方法的新概念。多尺度保存方式UGKWP方法将来自碰撞制度的流动制度保留到流体动力学方案,而不需要小区的大小和时间步骤,以小于平均自由路径和冲突时间。多效率保存是指包括计算时间和内存成本的方案的计算成本与相应的方案中最有效的方法相同,例如稀土制度中的稀有制度和流体动力学溶剂中的颗粒方法。显示UGKWP方法以满足MMP要求。与离散纵坐标方法相比,UGKWP方法在所有制度中特别有效,并且与离散纵坐标方法相比,在粒子的蒙特卡罗方法比较的情况下,在连续流状态下提出了大得多的随机噪声。提出了多种Mach和Chaudsen号码上流动的数值测试。这些实例包括在马赫数20和30处的圆柱体和knudsen数字1和10(-4),低速盖驱动腔流动,层边界层,冲击结构和冲击管问题的过度流动。这些结果验证了UGKWP方法的准确性,效率和多尺度和多效率性能。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号