首页> 外文期刊>Journal of Computational Physics >Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
【24h】

Adaptive activation functions accelerate convergence in deep and physics-informed neural networks

机译:自适应激活功能加速了深度和物理知识神经网络的收敛

获取原文
获取原文并翻译 | 示例
           

摘要

We employ adaptive activation functions for regression in deep and physics-informed neural networks (PINNs) to approximate smooth and discontinuous functions as well as solutions of linear and nonlinear partial differential equations. In particular, we solve the nonlinear Klein-Gordon equation, which has smooth solutions, the nonlinear Burgers equation, which can admit high gradient solutions, and the Helmholtz equation. We introduce a scalable hyper-parameter in the activation function, which can be optimized to achieve best performance of the network as it changes dynamically the topology of the loss function involved in the optimization process. The adaptive activation function has better learning capabilities than the traditional one (fixed activation) as it improves greatly the convergence rate, especially at early training, as well as the solution accuracy. To better understand the learning process, we plot the neural network solution in the frequency domain to examine how the network captures successively different frequency bands present in the solution. We consider both forward problems, where the approximate solutions are obtained, as well as inverse problems, where parameters involved in the governing equation are identified. Our simulation results show that the proposed method is a very simple and effective approach to increase the efficiency, robustness and accuracy of the neural network approximation of nonlinear functions as well as solutions of partial differential equations, especially for forward problems. We theoretically prove that in the proposed method, gradient descent algorithms are not attracted to suboptimal critical points or local minima. Furthermore, the proposed adaptive activation functions are shown to accelerate the minimization process of the loss values in standard deep learning benchmarks using CIFAR-10, CIFAR-100, SVHN, MNIST, KMNIST, Fashion-MNIST, and Semeion datasets with and without data augmentation. (C) 2019 Elsevier Inc. All rights reserved.
机译:我们采用自适应激活功能,用于深入和物理信息的神经网络(PINNS)中的回归,以近似光滑和不连续的功能以及线性和非线性偏微分方程的解决方案。特别是,我们解决了具有光滑解决方案的非线性Klein-Gordon方程,这是非线性汉堡方程,可以承认高梯度解决方案和亥姆霍兹方程。我们在激活功能中引入可扩展的超参数,可以优化以实现网络的最佳性能,因为它动态地改变了优化过程中涉及的丢失功能的拓扑。自适应激活功能具有比传统的(固定激活)更好的学习能力,因为它提高了收敛速度,特别是在早期训练以及解决方案准确性。为了更好地理解学习过程,我们在频域中绘制神经网络解决方案,以检查网络如何捕获解决方案中存在的不同频带。我们考虑了在获得近似解的前向问题,以及识别控制方程中涉及的参数的逆问题。我们的仿真结果表明,该方法是一种非常简单有效的方法,可以提高非线性功能的神经网络近似的效率,稳健性和准确性以及部分微分方程的解,特别是对于前向问题。理论上,从理论上证明,在所提出的方法中,梯度下降算法不被次优关键点或局部最小值吸引。此外,示出了所提出的自适应激活功能,可以使用Cifar-10,CiFar-100,SVHN,MNIST,KMnist,Fashion-Mnist和Hymeion DataSets加速标准深度学习基准中的损失值的最小化过程,其中包含和无数据增强。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号