...
首页> 外文期刊>Journal of Computational Physics >Data-driven deep learning of partial differential equations in modal space
【24h】

Data-driven deep learning of partial differential equations in modal space

机译:模态空间中偏微分方程的数据驱动深度学习

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a framework for recovering/approximating unknown time-dependent partial differential equation (PDE) using its solution data. Instead of identifying the terms in the underlying PDE, we seek to approximate the evolution operator of the underlying PDE numerically. The evolution operator of the PDE, defined in infinite-dimensional space, maps the solution from a current time to a future time and completely characterizes the solution evolution of the underlying unknown PDE. Our recovery strategy relies on approximation of the evolution operator in a properly defined modal space, i.e., generalized Fourier space, in order to reduce the problem to finite dimensions. The finite dimensional approximation is then accomplished by training a deep neural network structure, which is based on residual network (ResNet), using the given data. Error analysis is provided to illustrate the predictive accuracy of the proposed method. A set of examples of different types of PDEs, including inviscid Burgers' equation that develops discontinuity in its solution, are presented to demonstrate the effectiveness of the proposed method. (C) 2020 Elsevier Inc. All rights reserved.
机译:我们介绍了一种使用其解决方案数据恢复/近似未知的时间依赖性部分微分方程(PDE)的框架。除了识别底层PDE中的术语,而不是在数值上寻求近似底层PDE的演化运营商。 PDE的进化操作员在无限尺寸空间中定义,将该解决方案从当前时间映射到未来时间,并完全表征了底层未知PDE的溶液演变。我们的恢复策略依赖于进化运营商在适当定义的模态空间中的近似,即广义傅立叶空间,以减少有限尺寸的问题。然后,通过使用给定数据训练基于残余网络(Reset)的深神经网络结构来实现有限尺寸近似。提供错误分析以说明所提出的方法的预测精度。提出了一组不同类型的PDE的示例,包括在其解决方案中产生不连续性的托盘汉堡的等式,以证明所提出的方法的有效性。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号