首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Learning data-driven discretizations for partial differential equations
【2h】

Learning data-driven discretizations for partial differential equations

机译:学习偏微分方程的数据驱动离散化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The numerical solution of partial differential equations (PDEs) is challenging because of the need to resolve spatiotemporal features over wide length- and timescales. Often, it is computationally intractable to resolve the finest features in the solution. The only recourse is to use approximate coarse-grained representations, which aim to accurately represent long-wavelength dynamics while properly accounting for unresolved small-scale physics. Deriving such coarse-grained equations is notoriously difficult and often ad hoc. Here we introduce data-driven discretization, a method for learning optimized approximations to PDEs based on actual solutions to the known underlying equations. Our approach uses neural networks to estimate spatial derivatives, which are optimized end to end to best satisfy the equations on a low-resolution grid. The resulting numerical methods are remarkably accurate, allowing us to integrate in time a collection of nonlinear equations in 1 spatial dimension at resolutions 4× to 8× coarser than is possible with standard finite-difference methods.
机译:偏微分方程(PDE)的数值解决方案具有挑战性,因为需要在较宽的长度和时间范围内解析时空特征。通常,解决解决方案中的最佳功能在计算上很棘手。唯一的办法是使用近似的粗粒度表示法,其目的是在适当考虑未解决的小规模物理学的同时,准确地表示长波动力学。众所周知,推导此类粗粒度方程非常困难,并且经常是临时性的。在这里,我们介绍数据驱动的离散化,这是一种基于已知基础方程的实际解来学习PDE最佳逼近的方法。我们的方法使用神经网络来估计空间导数,对空间导数进行端到端优化,以最好地满足低分辨率网格上的方程。所得的数值方法非常精确,这使我们能够及时地以1×4到8×的分辨率比标准有限差分法更粗地在1个空间维度上集成非线性方程组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号