...
首页> 外文期刊>Journal of Computational Physics >Mesoscale informed parameter estimation through machine learning: A case-study in fracture modeling
【24h】

Mesoscale informed parameter estimation through machine learning: A case-study in fracture modeling

机译:Mesoscale通过机器学习明智的参数估计:裂缝建模的案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Scale bridging is a critical need in computational sciences, where the modeling community has developed accurate physics models from first principles, of processes at lower length and time scales that influence the behavior at the higher scales of interest. However, it is not computationally feasible to incorporate all of the lower length scale physics directly into upscaled models. This is an area where machine learning has shown promise in building emulators of the lower length scale models, which incur a mere fraction of the computational cost of the original higher fidelity models. We demonstrate the use of machine learning using an example in materials science estimating continuum scale parameters by emulating, with uncertainties, complicated mesoscale physics. We describe a new framework to emulate the fine scale physics, especially in the presence of microstructures, using machine learning, and showcase its usefulness by providing an example from modeling fracture propagation. Our approach can be thought of as a data-driven dimension reduction technique that yields probabilistic emulators. Our results show well-calibrated predictions for the quantities of interests in a low-strain simulation of fracture propagation at the mesoscale level. On average, we achieve similar to 10% relative errors on time-varying quantities like total damage and maximum stresses. Successfully replicating mesoscale scale physics within the continuum models is a crucial step towards predictive capability in multi-scale problems. Published by Elsevier Inc.
机译:规模桥接是计算科学中的关键需求,其中建模社区从第一个原则开发了精确的物理模型,在较低的长度和时间尺度下的过程,这些过程会影响较高的感兴趣尺度的行为。然而,将所有较低长度级别物理学直接纳入Upscaled模型,它没有计算不可行。这是机器学习在较低长度尺度模型的仿真器中显示了承诺的领域,这仅仅是原始更高保真模型的计算成本的分数。我们通过模拟使用材料科学估算连续尺度参数的示例来证明使用机器学习的使用,具有不确定性,复杂的Mesoscale物理学。我们描述了一种新的框架来模拟精细规模物理学,特别是在使用机器学习的情况下,通过提供模拟裂缝扩展的示例来展示其有用性。我们的方法可以被认为是一种数据驱动的尺寸减压技术,从而产生概率仿真器。我们的结果表明,在MESSCLE水平下,对低应变模拟中的裂缝扩展的低应变模拟量的良好预测。平均而言,我们在时变量与总损坏和最大应力的时变量相似的相对误差。成功复制连续内模型中的Mescale Scalics物理是对多种问题中预测性能力的关键步骤。 elsevier公司发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号