首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Exploration of Machine Learning Techniques in Emulating a Coupled Soil–Canopy–Atmosphere Radiative Transfer Model for Multi-Parameter Estimation From Satellite Observations
【24h】

Exploration of Machine Learning Techniques in Emulating a Coupled Soil–Canopy–Atmosphere Radiative Transfer Model for Multi-Parameter Estimation From Satellite Observations

机译:基于卫星观测的多参数估算土壤-地壳-大气耦合辐射传输模型的机器学习技术探索

获取原文
获取原文并翻译 | 示例

摘要

The time-consuming modeling of physical remote sensing models restricts their application to parameter estimation from satellite observations. Machine learning techniques have become highly developed in recent years and show good capacity for model fitting. Based on our previously developed coupled soilcanopyatmosphere radiative transfer model (RTM) and a multiple parameters estimation scheme, this paper evaluates the performance of four machine learning algorithms [Gaussian process regression (GPR), back-propagation neural networks (NNs), random forest regression, and general regression NN] on emulating the coupled RTM, where the traditional lookup table (LUT) algorithm is also compared. The results show that the GPR algorithm can emulate complex RTMs with excellent accuracy and efficiency. GPR emulators of photosynthetically active radiation (PAR), fraction of absorbed PAR, and incident shortwave radiation were applied to the multi-parameter estimation scheme to replace the traditional LUT algorithm, which avoids the need to integrate over the spectra while achieving an acceleration ratio of 16. A test of the updated multi-parameter estimation scheme at the Bondville site using 18 years of clear-sky observations demonstrates that replacing the computationally expensive integration processes with GPR emulators is practical. The emulators can also be used to simulate the corresponding parameters independently, and this GPR acceleration method for complex models is universal and can be easily applied to other time-consuming models.
机译:物理遥感模型的耗时建模将其应用限制为根据卫星观测进行参数估计。近年来,机器学习技术已得到高度发展,并显示出良好的模型拟合能力。基于我们先前开发的耦合土壤冠层大气辐射传递模型(RTM)和多参数估计方案,本文评估了四种机器学习算法[高斯过程回归(GPR),反向传播神经网络(NNs),随机森林回归]的性能,以及关于回归RTM的一般回归NN],还比较了传统的查找表(LUT)算法。结果表明,GPR算法可以仿真复杂的RTM,具有出色的准确性和效率。将光合有效辐射(PAR),吸收的PAR的比例和入射短波辐射的GPR仿真器应用于多参数估计方案,以取代传统的LUT算法,从而避免了在光谱积分的同时实现加速比为16.使用18年的晴空观测,在Bondville站点对更新的多参数估计方案进行了测试,结果表明,用GPR仿真器代替计算量大的集成过程是可行的。仿真器还可以用于独立地仿真相应的参数,这种针对复杂模型的GPR加速方法具有通用性,可以轻松地应用于其他耗时的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号