...
首页> 外文期刊>Journal of Climate >Eddy Lifetime, Number, and Diffusivity and the Suppression of Eddy Kinetic Energy in Midwinter
【24h】

Eddy Lifetime, Number, and Diffusivity and the Suppression of Eddy Kinetic Energy in Midwinter

机译:涡旋寿命,数量和扩散性以及助剂涡旋能量的抑制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The wintertime evolution of the North Pacific storm track appears to challenge classical theories of baroclinic instability, which predict deeper extratropical cyclones when baroclinicity is highest. Although the surface baroclinicity peaks during midwinter, and the jet is strongest, eddy kinetic energy (EKE) and baroclinic conversion rates have a midwinter minimum over the North Pacific. This study investigates how the reduction in EKE translates into a reduction in eddy potential vorticity (PV) and heat fluxes via changes in eddy diffusivity. Additionally, it augments previous observations of the midwinter storm-track evolution in both hemispheres using climatologies of tracked surface cyclones. In the North Pacific, the number of surface cyclones is highest during midwinter, while the mean EKE per cyclone and the eddy lifetime are reduced. The midwinter reduction in upper-level eddy activity hence is not associated with a reduction in surface cyclone numbers. North Pacific eddy diffusivities exhibit a midwinter reduction at upper levels, where the Lagrangian decorrelation time is shortest (consistent with reduced eddy lifetimes) and the meridional parcel velocity variance is reduced (consistent with reduced EKE). The resulting midwinter reduction in North Pacific eddy diffusivities translates into an eddy PV flux suppression. In contrast, in the North Atlantic, a milder reduction in the decorrelation time is offset by a maximum in velocity variance, preventing a midwinter diffusivity minimum. The results suggest that a focus on causes of the wintertime evolution of Lagrangian decorrelation times and parcel velocity variance will be fruitful for understanding causes of seasonal storm-track variations.
机译:北太平洋风暴轨道的冬季演变似乎挑战了雄芯无稳定性的经典理论,当条巴林最高时,这预测了更深的潜水旋风。虽然冬季冬季期间的表面条巴冠状峰,并且喷射是最强的,涡流能量(EKE)和倒核转化率在北太平洋上最小的仲冬季。本研究研究了EKS的减少如何转化为涡电势涡度(PV)和通过涡流扩散率的变化的减少。此外,它增加了使用追踪表面旋风器的气候的半球体中冬季风暴轨道演化的先前观察。在北太平洋中,冬季冬季的表面旋风数最高,而每旋风和涡流的平均EKE也会降低。上层涡流的跨度降低了,因此与表面旋风数的减少无关。北太平洋涡流扩散性在上层展示了跨度减少,其中拉格朗日去相关时间是最短的(与涡流寿命的减少)保持一致,并减少了子午性包裹速度方差(与eks降低)。由此产生的北太平洋涡流扩散的跨度减少转化为涡流PV通量抑制。相比之下,在北大西洋中,去序时间的更高级别在速度方差中偏移最大,防止仲冬扩散率最小。结果表明,对季节性风暴轨道变化的原因,对拉格朗日去相关次数和包裹速度方差的冬季演化的原因令人富有成果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号