首页> 外文期刊>Journal of chemical theory and computation: JCTC >The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding
【24h】

The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding

机译:基于远程校正密度功能紧密结合的片段分子轨道法

获取原文
获取原文并翻译 | 示例
           

摘要

The presently available linear scaling approaches to density-functional tight-binding (DFTB) based on the fragment molecular orbital (FMO) method are severely impacted by the problem of artificial charge transfer due to the self-interaction error (SIE), which hampers the simulation of zwitterionic systems such as biopolymers or ionic liquids. Here we report an extension of FMO-DFTB where we included a long-range corrected (LC) functional designed to mitigate the DFTB SIE, called the FMO-LC-DFTB method, resulting in a robust method which succeeds in simulating zwitterionic systems. Both energy and analytic gradient are developed for the gas phase and the polarizable continuum model of solvation. The scaling of FMO-LC-DFTB with system size N is shown to be almost linear, O(N1.13-1.28) and its numerical accuracy is established for a variety of representative systems including neutral and charged polypeptides. It is shown that pair interaction energies between fragments for two mini-proteins are in excellent agreement with results from long-range corrected density functional theory. The new method was employed in long time scale (1 ns) molecular dynamics simulations of the tryptophan cage protein (PDB: 1L2Y) in the gas phase for four different protonation states and in stochastic global minimum structure searches for 1-ethyl-3-methylimidazolium nitrate ionic liquid clusters containing up to 2300 atoms.
机译:基于片段分子轨道(FMO)方法的目前可用的线性缩放方法对碎片分子轨道(FMO)方法严重影响了由于自交互误差(SIE)而受到人工电荷转移问题的影响,这堵塞了模拟生物聚合物或离子液体等两性离子系统。在这里,我们报告了FMO-DFTB的扩展,其中我们包括一个远程校正(LC)功能,该功能旨在减轻DFTB SIE,称为FMO-LC-DFTB方法,从而产生了一种成功模拟倍动性系统的鲁棒方法。能量和分析梯度都为气相和可极化的连续溶解化的溶剂化模型开发。具有系统尺寸N的FMO-LC-DFTB的缩放显示为几乎是线性的,O(N1.13-1.28)和其数值准确性建立了包括中性和带电多肽的各种代表性系统。结果表明,两个迷你蛋白片段之间的对相互作用能量与远程校正密度功能理论的结果非常一致。在四种不同质子化状态的气相中的色氨酸笼蛋白(PDB:1L2Y)的长时间(1ns)分子动力学模拟中使用新方法,并在四种不同的质子化状态和随机全局最小结构中进行1-乙基-3-甲基咪唑鎓含有高达2300原子的硝酸根离子液体簇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号