首页> 美国卫生研究院文献>The Journal of Chemical Physics >Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method
【2h】

Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method

机译:使用密度泛函紧密结合方法耗散Born-Oppenheimer分子动力学的拉格朗日公式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An important element determining the time requirements of Born-Oppenheimer molecular dynamics (BOMD) is the convergence rate of the self-consistent solution of Roothaan equations (SCF). We show here that improved convergence and dynamics stability can be achieved by use of a Lagrangian formalism of BOMD with dissipation (DXL-BOMD). In the DXL-BOMD algorithm, an auxiliary electronic variable (e.g., the electron density or Fock matrix) is propagated and a dissipative force is added in the propagation to maintain the stability of the dynamics. Implementation of the approach in the self-consistent charge density functional tight-binding method makes possible simulations that are several hundred picoseconds in lengths, in contrast to earlier DFT-based BOMD calculations, which have been limited to tens of picoseconds or less. The increase in the simulation time results in a more meaningful evaluation of the DXL-BOMD method. A comparison is made of the number of iterations (and time) required for convergence of the SCF with DXL-BOMD and a standard method (starting with a zero charge guess for all atoms at each step), which gives accurate propagation with reasonable SCF convergence criteria. From tests using NVE simulations of C2F4 and 20 neutral amino acid molecules in the gas phase, it is found that DXL-BOMD can improve SCF convergence by up to a factor of two over the standard method. Corresponding results are obtained in simulations of 32 water molecules in a periodic box. Linear response theory is used to analyze the relationship between the energy drift and the correlation of geometry propagation errors.
机译:确定Born-Oppenheimer分子动力学(BOMD)时间要求的重要因素是Roothaan方程(SCF)自洽解的收敛速度。我们在这里表明,可以通过使用耗散的BOMD的拉格朗日形式来提高收敛性和动力学稳定性。在DXL-BOMD算法中,传播辅助电子变量(例如,电子密度或福克矩阵),并在传播过程中添加耗散力以保持动力学的稳定性。自相容电荷密度功能紧密绑定方法中该方法的实现使得模拟长度可能达到几百皮秒,而之前的基于DFT的BOMD计算被限制在几十皮秒或更短。仿真时间的增加导致对DXL-BOMD方法的更有意义的评估。比较了使用DXL-BOMD进行SCF收敛所需的迭代次数(和时间)和标准方法(从每个步骤的所有原子的零电荷猜测开始),从而在合理的SCF收敛下实现了准确的传播。标准。通过使用NVE模拟气相中的C2F4和20个中性氨基酸分子进行的测试,发现DXL-BOMD可以将SCF收敛性提高至标准方法的两倍。在周期盒中模拟32个水分子可获得相应的结果。线性响应理论用于分析能量漂移与几何传播误差之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号