...
首页> 外文期刊>The Journal of Chemical Physics >Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method
【24h】

Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method

机译:使用密度泛函紧密结合方法耗散Born-Oppenheimer分子动力学的拉格朗日公式

获取原文
获取原文并翻译 | 示例
           

摘要

An important element determining the time requirements of Born-Oppenheimer molecular dynamics (BOMD) is the convergence rate of the self-consistent solution of Roothaan equations (SCF). We show here that improved convergence and dynamics stability can be achieved by use of a Lagrangian formalism of BOMD with dissipation (DXL-BOMD). In the DXL-BOMD algorithm, an auxiliary electronic variable (e.g., the electron density or Fock matrix) is propagated and a dissipative force is added in the propagation to maintain the stability of the dynamics. Implementation of the approach in the self-consistent charge density functional tight-binding method makes possible simulations that are several hundred picoseconds in lengths, in contrast to earlier DFT-based BOMD calculations, which have been limited to tens of picoseconds or less. The increase in the simulation time results in a more meaningful evaluation of the DXL-BOMD method. A comparison is made of the number of iterations (and time) required for convergence of the SCF with DXL-BOMD and a standard method (starting with a zero charge guess for all atoms at each step), which gives accurate propagation with reasonable SCF convergence criteria. From tests using NVE simulations of C_2F_4 and 20 neutral amino acid molecules in the gas phase, it is found that DXL-BOMD can improve SCF convergence by up to a factor of two over the standard method. Corresponding results are obtained in simulations of 32 water molecules in a periodic box. Linear response theory is used to analyze the relationship between the energy drift and the correlation of geometry propagation errors.
机译:确定Born-Oppenheimer分子动力学(BOMD)时间要求的重要因素是Roothaan方程(SCF)自洽解的收敛速度。我们在这里显示,可以通过使用耗散的BOMD的拉格朗日形式来提高收敛性和动力学稳定性。在DXL-BOMD算法中,传播辅助电子变量(例如,电子密度或福克矩阵),并在传播过程中添加耗散力以保持动力学的稳定性。在自洽电荷密度功能紧密绑定方法中实施该方法,使模拟可能达到数百皮秒的长度,而之前的基于DFT的BOMD计算被限制在几十皮秒或更短。仿真时间的增加导致对DXL-BOMD方法的评估更有意义。比较了使用DXL-BOMD进行SCF收敛所需的迭代次数(和时间)和标准方法(从每个步骤的所有原子的零电荷猜测开始),从而在合理的SCF收敛下实现了准确的传播。标准。通过使用NVE模拟气相中的C_2F_4和20个中性氨基酸分子进行的测试,发现DXL-BOMD可以将SCF收敛性提高至标准方法的两倍。在周期盒中模拟32个水分子可获得相应的结果。线性响应理论被用来分析能量漂移和几何传播误差之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号