首页> 外文期刊>Journal of chemical theory and computation: JCTC >Time-Dependent Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling
【24h】

Time-Dependent Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling

机译:具有旋转组件和旋转相对的缩放的时间依赖的双混合密度功能

获取原文
获取原文并翻译 | 示例
           

摘要

For the first time, we combine time-dependent double-hybrid density functional approximations (TD-DHDFAs) for the calculation of electronic excitation energies with the concepts of spin-component and spin-opposite scaling (SCS/SOS) of electron-pair contributions to their nonlocal correlation components. Different flavors of this idea, ranging from standard SCS parameters to fully fitted parameter sets, are presented and tested on six different parent DHDFAs. For cross-validation, we assess those methods on three benchmark sets that cover small- to medium-sized chromophores (up to 78 atoms) and different excitation types. For this purpose, we also introduce new CC3 reference values for the popular Gordon benchmark set that we recommend using in future studies. Our results confirm that already the (unsealed) parent TD-DHDFAs are accurate and outperform some wave function methods. Further introduction of SCS/SOS eliminates extreme outliers, reduces deviation spans from reference values by up to 0:5 eV, aligns the performance of the Tamm-Dancoff approximation (TDA) to that of full TD calculations, and also enables a more balanced description of different excitation types. The best performing TD-based methods in our cross validation have mean absolute deviations as low as 0.14 eV compared to the time and resource-intensive CC3 approach. A very important finding is that we also obtained SOS variants with excellent performance, contrary to wave function based methods. This opens a future pathway to highly efficient methods for the optimization of excited-state geometries, particularly when paired with computing strategies such as the Laplace transform. We recommend our SCS- and SOS-based variants for further testing and subsequent applications.
机译:我们首次结合时间依赖的双混合密度泛函近似(TD-DHDFA),以计算电子励磁能量,利用电子对贡献的旋转组件和旋转相对的缩放(SCS / SOS)的概念计算电子励磁能量他们的非局部相关组分。此思想的不同口味,从标准SCS参数范围到完全装配参数集,并在六个不同的父DHDFA上进行测试和测试。对于交叉验证,我们在三个基准集合中评估这些方法,覆盖中小型发色团(最多78个原子)和不同的励磁类型。为此目的,我们还为我们建议在未来的研究中推荐使用的流行Gordon基准组合的新CC3参考值。我们的结果证实已有(未密封的)父TD-DHDFA准确而优于一些波函数方法。进一步引入SCS / SOS消除了极端异常值,将偏差跨度从参考值减少到0:5 EV,将Tamm-Dancoff近似(TDA)的性能对齐至完整TD计算的性能,并且还可以实现更平衡的描述不同的励磁类型。与时间和资源密集的CC3方法相比,我们交叉验证中最佳的基于TD的基于TD的方法具有低至0.14eV的绝对偏差。一个非常重要的发现是,我们还获得了具有优异性能的SOS变体,与基于波功能的方法相反。这为未来的途径打开了对优化兴奋状态几何形状的高效方法,特别是当与拉普拉斯变换等计算策略配对时。我们建议我们的SCS和SOS为基于SOS的变体进行进一步测试和随后的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号