首页> 外文期刊>Journal of chemical theory and computation: JCTC >Reduced Common Molecular Orbital Basis for Nonorthogonal Configuration Interaction
【24h】

Reduced Common Molecular Orbital Basis for Nonorthogonal Configuration Interaction

机译:用于非正交配置相互作用的常见分子轨道基础

获取原文
获取原文并翻译 | 示例
           

摘要

Electron and charge transfers are part of many vital processes in nature and technology. Ab initio descriptions of these processes provide useful insights that can be utilized for applications. A combination of the embedded cluster material model and nonorthogonal configuration interaction (NOCI), in which the cluster wave functions are expanded in many-electron basis functions (MEBFs) consisting of spin-adapted, antisymmetrized products of multiconfigurational wave functions of fragments (which are usually molecules) in the cluster, appears to provide a compromise between accuracy and calculation time. Additional advantages of this NOCI-Fragments approach are the chemically convenient interpretation of the wave function in terms of molecular states, and the direct accessibility of electronic coupling between diabatic states to describe energy and electron transfer processes. Bottlenecks in this method are the large number of two-electron integrals that have to be handled for the calculation of an electronic coupling matrix element and the enormous number of matrix elements over determinant pairs that have to be evaluated for the calculation of one matrix element between the MEBFs. We show here how we created a reduced common molecular orbital basis that is utilized to significantly reduce the number of two-electron integrals that need to be handled. The results obtained with this basis do not show any loss of accuracy in relevant quantities like electronic couplings and vertical excitation energies. We also show a significant reduction in computation time without loss in accuracy when matrix elements over determinant pairs with small weights are neglected in the NOCI. These improvements in the methodology render NOCI-Fragments to be also applicable to treat clusters of larger molecular systems with larger atomic basis sets and larger active spaces, as the computation time becomes dependent on the number of occupied orbitals and less dependent on the size of the active space.
机译:电子和电荷转移是自然和技术许多重要过程的一部分。这些过程的AB Initio描述提供了可用于应用的有用的见解。嵌入式集群材料模型和非正交配置交互(NOCI)的组合,其中簇波函数以多电子基函数(MEBF)扩展,包括碎片的旋转适应的多费力型波函数的旋转适应的防逆产品(这是通常在群集中的分子似乎在精度和计算时间之间提供折衷。该NOCI片段方法的额外优点是在分子状态方面的波函数的化学方便的解释,以及糖尿病状态之间的电子耦合的直接可访问性来描述能量和电子转移过程。该方法中的瓶颈是必须处理电子耦合矩阵元件的大量的两个二电子积分,并且在必须评估它们之间的一个矩阵元素的计算的确定对的巨大数量的矩阵元件MEBFS。我们在这里展示了我们如何创造一种减少的共同分子轨道基础,用于显着降低需要处理的两电子积分的数量。通过此基础获得的结果不会显示在相关数量中的任何准确性损失,如电子联轴器和垂直励磁能量。当在NOCI中忽略小重量的矩阵元素时,我们还显示了计算时间的计算时间显着降低了矩阵元素。这些方法的改进渲染Noci-碎片还适用于处理具有更大原子基集和较大的有源空间的较大分子系统的簇,因为计算时间取决于占用轨道的数量,并且依赖于依赖于占概率的数量。活动空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号