...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP
【24h】

Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP

机译:复杂分子环境中的电子激发:Votca-XTP中的许多身体绿色功能理论

获取原文
获取原文并翻译 | 示例
           

摘要

Many-body Green's functions theory within the GW approximation and the Bethe-Salpeter Equation (BSE) is implemented in the open-source VOTCA-XTP software, aiming at the calculation of electronically excited states in complex molecular environments. Based on Gaussian-type atomic orbitals and making use of resolution of identity techniques, the code is designed specifically for nonperiodic systems. Application to a small molecule reference set successfully validates the methodology and its implementation for a variety of excitation types covering an energy range from 2 to 8 eV in single molecules. Further, embedding each GW-BSE calculation into an atomistically resolved surrounding, typically obtained from Molecular Dynamics, accounts for effects originating from local fields and polarization. Using aqueous DNA as a prototypical system, different levels of electrostatic coupling between the regions in this GW-BSE/MM setup are demonstrated. Particular attention is paid to charge-transfer (CT) excitations in adenine base pairs. It is found that their energy is extremely sensitive to the specific environment and to polarization effects. The calculated redshift of the CT excitation energy compared to a nucelobase dimer treated in vacuum is of the order of 1 eV, which matches expectations from experimental data. Predicted lowest CT energies are below that of a single nucleobase excitation, indicating the possibility of an initial (fast) decay of such an UV excited state into a binucleobase CT exciton. The results show that VOTCA-XTP's GW-BSE/MM is a powerful tool to study a wide range of types of electronic excitations in complex molecular environments.
机译:GW近似和贝特 - Salpeter等式(BSE)内的许多身体绿色的功能理论在开源Votca-XTP软件中实现,旨在计算复杂分子环境中的电子激发状态。基于高斯型原子轨道并利用分辨率的身份技术,该代码专为非过期系统而设计。在小分子参考组中的应用成功地验证了各种激励类型的方法和实施,覆盖单分子中的2至8eV的能量范围。此外,将每个GW-BSE计算嵌入通常从分子动力学获得的原子分辨周围,占源自局部场和极化的效果。使用DNA作为原型系统,对该GW-BSE / MM设置中的区域之间的不同水平的静电耦合水平进行说明。特别注意腺嘌呤碱基对中的电荷转移(CT)激发。结果发现,它们的能量对特定环境和极化效应非常敏感。与真空处理的纽氯酰胺二聚体相比计算的CT激发能量的射频是1eV的阶数,其与实验数据的预期相匹配。预测的最低CT能量低于单一核酶激发的低于,表明将这种UV激发态的初始(快速)衰减的可能性进入BinuclosObase CT Exciton。结果表明,Votca-XTP的GW-BSE / MM是一种强大的工具,可以在复杂的分子环境中研究广泛类型的电子激发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号