...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians
【24h】

A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians

机译:深入学习化学汉密尔顿人的密度功能紧粘结层

获取原文
获取原文并翻译 | 示例
           

摘要

Current neural networks for predictions of molecular properties use quantum chemistry only as a source of training data. This paper explores models that use quantum chemistry as an integral part of the prediction process. This is done by implementing self-consistent-charge Density-Functional-Tight Binding (DFTB) theory as a layer for use in deep learning models. The DFTB layer takes, as input, Hamiltonian matrix elements generated from earlier layers and produces, as output, electronic properties from self-consistent field solutions of the corresponding DFTB Hamiltonian. Backpropagation enables efficient training of the model to target electronic properties. Two types of input to the DFTB layer are explored, splines and feed-forward neural networks. Because overfitting can cause models trained on smaller molecules to perform poorly on larger molecules, regularizations are applied that penalize nonmonotonic behavior and deviation of the Hamiltonian matrix elements from those of the published DFTB model used to initialize the model. The approach is evaluated on 15 700 hydrocarbons by comparing the root-mean-square error in energy and dipole moment, on test molecules with eight heavy atoms, to the error from the initial DFTB model. When trained on molecules with up to seven heavy atoms, the spline model reduces the test error in energy by 60% and in dipole moments by 42%. The neural network model performs somewhat better, with error reductions of 67% and 59%, respectively. Training on molecules with up to four heavy atoms reduces performance, with both the spline and neural net models reducing the test error in energy by about 53% and in dipole by about 25%.
机译:目前的神经网络用于分子特性的预测使用量子化学仅作为训练数据的来源。本文探讨了使用量子化学作为预测过程的组成部分的模型。这是通过实施自我一致电荷密度 - 功能紧密的绑定(DFTB)理论作为用于深度学习模型的层来完成的。 DFTB层作为输入,从早期层生成的汉密尔顿矩阵元素,作为输出,从相应的DFTB Hamiltonian的自我一致性场解决方案产生的电子特性。 BackPropagation可以高效地培训模型以定位电子属性。探索了两种类型的DFTB层输入,样条和前馈神经网络。由于过度装备可以导致较小分子训练的模型在较大的分子上表现不佳,因此应用规则化,以惩罚非单调行为和哈密顿矩阵元素与用于初始化模型的公开的DFTB模型的偏差。通过比较能量和偶极矩的根部平均方误差,在初始DFFB模型的误差上对八个重物的根均方误差进行比较来评估15 700烃的方法。当培训高达七个重原子的分子上时,样条模型将能量的测试误差减少60%,偶极矩数为42%。神经网络模型的表现略微,误差分别为67%和59%。培训高达四个重原子的分子可降低性能,用花键和神经网络模型将能量的试验误差减少约53%,偶极液约25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号