...
首页> 外文期刊>Biotechnology and Bioengineering >Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production.
【24h】

Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production.

机译:葡萄糖受限的高细胞密度补料分批培养中重组蛋白生产过程中巴斯德毕赤酵母的定量生理学。

获取原文
获取原文并翻译 | 示例
           

摘要

Pichia pastoris has become one of the major microorganisms for the production of proteins in recent years. This development was mainly driven by the readily available genetic tools and the ease of high-cell density cultivations using methanol (or methanol/glycerol mixtures) as inducer and carbon source. To overcome the observed limitations of methanol use such as high heat development, cell lysis, and explosion hazard, we here revisited the possibility to produce proteins with P. pastoris using glucose as sole carbon source. Using a recombinant P. pastoris strain in glucose limited fed-batch cultivations, very high-cell densities were reached (more than 200 g(CDW) L(-1)) resulting in a recombinant protein titer of about 6.5 g L(-1). To investigate the impact of recombinant protein production and high-cell density fermentation on the metabolism of P. pastoris, we used (13)C-tracer-based metabolic flux analysis in batch and fed-batch experiments. At a controlled growth rate of 0.12 h(-1) in fed-batch experiments an increased TCA cycle flux of 1.1 mmol g(-1) h(-1) compared to 0.7 mmol g(-1) h(-1) for the recombinant and reference strains, respectively, suggest a limited but significant flux rerouting of carbon and energy resources. This change in flux is most likely causal to protein synthesis. In summary, the results highlight the potential of glucose as carbon and energy source, enabling high biomass concentrations and protein titers. The insights into the operation of metabolism during recombinant protein production might guide strain design and fermentation development.
机译:近年来,巴斯​​德毕赤酵母已成为生产蛋白质的主要微生物之一。这种发展主要是由易于获得的遗传工具和使用甲醇(或甲醇/甘油混合物)作为诱导剂和碳源的高细胞密度培养的容易性驱动的。为了克服所观察到的甲醇使用限制,例如高热量产生,细胞裂解和爆炸危险,我们在此重新探讨了使用葡萄糖作为唯一碳源,利用巴斯德毕赤酵母生产蛋白质的可能性。在葡萄糖有限的分批补料培养中使用重组巴斯德毕赤酵母菌株,达到非常高的细胞密度(超过200 g(CDW)L(-1)),从而产生约6.5 g L(-1)的重组蛋白滴度)。若要研究重组蛋白生产和高细胞密度发酵对巴斯德毕赤酵母代谢的影响,我们在分批和补料分批实验中使用了基于(13)C示踪剂的代谢通量分析。在补料分批实验中以0.12 h(-1)的可控生长速率,TCA循环通量增加了1.1 mmol g(-1)h(-1),相比之下,对于0.7 mmol g(-1)h(-1)重组菌株和参比菌株分别表明碳和能源的通量有限而重要。通量的这种变化很可能是蛋白质合成的原因。总而言之,研究结果突出了葡萄糖作为碳和能源的潜力,可实现高生物量浓度和蛋白质滴定度。重组蛋白生产过程中对代谢操作的见解可能会指导菌株设计和发酵开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号