首页> 外文期刊>Drug Metabolism and Disposition: The Biological Fate of Chemicals >Physiologically Relevant, Humanized Intestinal Systems to Study Metabolism and Transport of Small Molecule Therapeutics
【24h】

Physiologically Relevant, Humanized Intestinal Systems to Study Metabolism and Transport of Small Molecule Therapeutics

机译:生理相关的人源化肠道系统,用于研究新陈代谢治疗的代谢和运输

获取原文
获取原文并翻译 | 示例
           

摘要

Intestinal disposition of small molecules involves interplay of drug metabolizing enzymes (DMEs), transporters, and host-microbiome interactions, which has spurred the development of in vitro intestinal models derived from primary tissue sources. Such models have been bioengineered from intestinal crypts, mucosal extracts, induced pluripotent stem cell (iPSC)-derived organoids, and human intestinal tissue. This minireview discusses the utility and limitations of these human-derived models in support of small molecule drug metabolism and disposition. Enteroids from human intestinal crypts, organoids derived from iPSCs using growth factors or small molecule compounds, and enterocytes extracted from mucosal scrapings show key absorptive cell morphology while are limited in quantitative applications due to the lack of accessibility to the apical compartment, the lack of monolayers, or low expression of key DMEs, transporters, and nuclear hormone receptors. Despite morphogenesis to epithelial cells, similar challenges have been reported by more advanced technologies that have explored the impact of flow and mechanical stretch on proliferation and differentiation of Caco-2 cells. Most recently, bioengineered human intestinal epithelial or ileal cells have overcome many of the challenges, as the DME and transporter expression pattern resembles that of native intestinal tissue. Engineering advances may improve such models to support longer-term applications and meet end-user needs. Biochemical characterization and transcriptomic, proteomic, and functional endpoints of emerging novel intestinal models, when referenced to native human tissue, can provide greater confidence and increased utility in drug discovery and development.
机译:小分子的肠道布置涉及药物代谢酶(DMES),转运蛋白和宿主微生物组相互作用的相互作用,其刺激了衍生自原发性组织来源的体外肠道模型的发育。这些模型已从肠土穴位,粘膜提取物,诱导多能干细胞(IPSC)的有机体和人肠组织中生成生物工程。该MINIREVIEW讨论了这些人类衍生模型支持小分子药物代谢和处置的实用性和局限性。从人类肠道中注入,使用生长因子或小分子化合物衍生自IPSCs的有机体,以及从粘膜刮擦中提取的肠细胞显示出关键吸收细胞形态,同时由于缺乏对顶部隔室的可达性而有限的定量应用,缺乏单层缺乏单层或低表达关键DMES,运输扣和核激素受体。尽管对上皮细胞的形态发生,但更多先进技术报告了类似的挑战,这些挑战已经探索了流动和机械拉伸对Caco-2细胞的增殖和分化的影响。最近,生物工程的人类肠上皮或eLEAL细胞克服了许多挑战,因为DME和转运蛋白表达模式类似于天然肠组织。工程进步可能会改进此类模型,以支持长期应用程序并满足最终用户需求。当原生人组织引用时,新兴新型肠道模型的生化表征和转录​​组,蛋白质组学和功能终点,可以提供更大的置信度和增加药物发现和发展的效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号