...
首页> 外文期刊>Journal of Applied Geophysics >3D full-waveform inversion in time-frequency domain: Field data application
【24h】

3D full-waveform inversion in time-frequency domain: Field data application

机译:3D时间频域中的全波形反转:现场数据应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a 3D Gauss-Newton full-waveform inversion (3D GN-FWI) method in the time-frequency domain for detection of subsurface anomalies. The use of Gauss-Newton approach is particularly important for near-surface imaging, in which acquired seismic wavefields arc dominated by Rayleigh waves. The inverse Hessian matrix utilized in this approach acts as a weighting function to reduce the dominancy of Rayleigh waves, increase the contribution of body waves, and thus help resolve deeper structures. However, the Gauss-Newton method requires a huge amount of computer memory to store derivative wavefields (Jacobian matrix). To address this issue, the presented 3D GN-FVVI method exploits advantages of the combined time-frequency domain. Specifically, the forward wave simulation is done in the time-domain to generate wavefields at multiple frequencies simultaneously without the requirement of an inverse matrix solver, while inversion is conducted in the frequency-domain to significantly reduce the required computer memory. Synthetic and field experimental datasets are used to assess the capability of the presented waveform method. The synthetic result shows that a variable profile with a buried void is well recovered. For the field experiment, a large mobile shaker was used to induce wavefields at individual frequencies with consistent magnitudes required for the presented frequency-domain inversion. The wavefields were recorded with uniform 2D grids of sources and receivers on the ground surface, and analyzed to obtain 3D subsurface wave velocity profiles. The seismic result is consistent with an invasive standard penetration test (SPT), including the identified bedrock depth and buried void. (C) 2020 Elsevier B.V. All rights reserved.
机译:我们在时频域中介绍了一个3D高斯 - 牛顿全波形反演(3D GN-FWI)方法,以检测地下异常。高斯 - 牛顿方法的使用对于近表面成像尤为重要,其中所获得的地震波场弧形由瑞利波主导。在该方法中使用的反向Hessian矩阵用作减少瑞利波的主导的加权功能,增加身体波的贡献,从而有助于解决更深的结构。然而,Gauss-Newton方法需要大量的计算机存储器来存储衍生波场(雅戈族矩阵)。为了解决这个问题,所呈现的3D GN-FVVI方法利用组合时频域的优点。具体地,正向波仿真在时域中完成,以同时在多个频率下生成波场,而不需要逆矩阵求解器,而在频域中进行反转,以显着减少所需的计算机存储器。合成和现场实验数据集用于评估所提出的波形方法的能力。合成结果表明,具有掩埋空隙的可变轮廓良好恢复。对于现场实验,大型移动振动器用于诱导具有呈现频域反转所需的一致大小的单个频率的波场。将波场用地面的均匀2D电网和接收器上的源2D网格记录,并分析以获得3D地下波速度配置文件。地震结果与侵入性标准渗透试验(SPT)一致,包括所识别的基岩深度和掩埋空隙。 (c)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号