...
首页> 外文期刊>Journal of Applied Electrochemistry >The enhancement of rate and cycle performance of LiMn 2O 4 at elevated temperatures by the synergistic roles of porous structure and dual-cation doping
【24h】

The enhancement of rate and cycle performance of LiMn 2O 4 at elevated temperatures by the synergistic roles of porous structure and dual-cation doping

机译:通过多孔结构的协同作用和双阳离子掺杂的协同作用,提高LiMn <下标> 2 O <下标> 4 的速率和循环性能。

获取原文
获取原文并翻译 | 示例

摘要

Spinel LiMn~(2)O~(4)-based cathode material has been successfully commercialized for power lithium ion batteries for large-scale applications in pure electric vehicles. However, pure LiMn~(2)O~(4)suffers from poor rate performance and fast capacity fading especially at elevated temperatures derived from Mn dissolution and structural distortion. Herein, a study on the rate and cycle performance of single/double-cation doped porous LiMn~(2)O~(4)microspheres, which was prepared by an easy method using porous MnCO~(3)microspheres as a self-supporting template, was performed. The as-synthesized porous Li~(1.02)Co~(0.05)Mn~(1.90)Li~(0.05)O~(4)(LMO-S4) microspheres constructed with nanometer-sized primary particles show an obvious enhancement of cyclability over other LiMn~(2)O~(4)-based materials such as Li~(1.02)Mn~(2)O~(4)(LMO-S1), Li~(1.02)Mn~(1.95)Li~(0.05)O~(4)(LMO-S2) and Li~(1.02)Co~(0.05)Mn~(1.95)O~(4)(LMO-S3), especially at an elevated temperature (55?°C). The obtained LMO-S4/lithium half cells deliver capacities of 113.1 and 109.0 mAh?g_(?1)at 1.0 and 5?C, respectively, with the corresponding capacity retentions of 88.9 and 90.2% for up to 1000 cycles. Meanwhile, it can deliver an initial capacity of 114.0 mAh?g_(?1)at 5?C with a capacity retention of 80.1% after 1000 cycles at 55?°C. Furthermore, it displays superior rate performance and cycle performance at 0?°C with a specific capacity of 106 mAh?g_(?1), and the capacity retention is 79.6% after 1000 cycles at 5?C. These results reveal that a dual-doping strategy and porous structure design play synergistic roles in the preparation of high performance LiMn~(2)O~(4)-based spinel cathode material. The cation co-doped strategy can maintain the crystal structural stability and provide interfacial stability while preserving fast Li_(+)diffusion during the long-time cycling at elevated temperatures. Furthermore, the porous structure favors fast Li_(+)intercalation/deintercalation kinetics by allowing electrolyte
机译:尖晶石Limn〜(2)O〜(4)基于纯电动车辆的大型应用的功率锂离子电池成功商业化。然而,纯净的Limn〜(2)O〜(4)患率低的速率性能和快速容量褪色,特别是在升高的温度下衍生自Mn溶解和结构变形。在此,通过使用多孔MNCO〜(3)微球作为自支撑,通过易于使用的方法制备单/双阳离子掺杂多孔锂〜(2)O〜(4)微球的速率和循环性能的研究模板,进行了。用纳米尺寸的初级颗粒构建的纳米尺寸粒子构建的诸如合成多孔Li〜(0.05)Li(0.05)Li(0.05)Li〜(0.05)Li〜(0.05)(0.05)o〜(0.05)o〜(4)(lmo-s4)微球。其他LiMn〜(2)O〜(4)基于Li〜(1.02)Mn〜(2)O〜(4)(LMO-S1),Li〜(1.02)Mn〜(1.95)Li〜( 0.05)O〜(4)(LMO-S2)和Li〜(1.02)CO〜(0.05)Mn〜(1.95)O〜(4)(LMO-S3),尤其是在升高的温度下(55Ω°C) 。所得的LMO-S4 /锂半细胞分别在1.0和5℃下递送113.1和109.0mah?G _(α1)的容量,相应的容量保持88.9和90.2%,可达1000次循环。同时,它可以在5℃下以5°C的初始容量为114.0mah _(α1),在55Ω℃下1000次循环后的容量保持80.1%。此外,它在0?°C下显示出优异的速率性能和循环性能,特定容量为106mAh _(α1),并且在5μl5Ω循环后容量保留为79.6%。这些结果表明,双掺杂策略和多孔结构设计在高性能LiMn〜(2)O〜(4)的尖晶石阴极材料的制备中起协同作用。阳离子共掺杂的策略可以保持晶体结构稳定性,并在长时间循环期间保留快速Li _(+)扩散的同时提供界面稳定性。此外,多孔结构通过允许电解质来利用快速Li _(+)插入/脱嵌动力学

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号