...
首页> 外文期刊>Journal of Anatomy >Scaling of the ankle extensor muscle‐tendon units and the biomechanical implications for bipedal hopping locomotion in the post‐pouch kangaroo Macropus fuliginosus Macropus fuliginosus
【24h】

Scaling of the ankle extensor muscle‐tendon units and the biomechanical implications for bipedal hopping locomotion in the post‐pouch kangaroo Macropus fuliginosus Macropus fuliginosus

机译:踝关节伸肌肌腱单位的缩放和对袋鼠袋鼠大鼠大鼠富肽大鼠大鼠富尼碱的双层跳跃运动的生物力学影响

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Bipedal hopping is used by macropods, including rat‐kangaroos, wallabies and kangaroos (superfamily Macropodoidea). Interspecific scaling of the ankle extensor muscle‐tendon units in the lower hindlimbs of these hopping bipeds shows that peak tendon stress increases disproportionately with body size. Consequently, large kangaroos store and recover more strain energy in their tendons, making hopping more efficient, but their tendons are at greater risk of rupture. This is the first intraspecific scaling analysis on the functional morphology of the ankle extensor muscle‐tendon units (gastrocnemius, plantaris and flexor digitorum longus) in one of the largest extant species of hopping mammal, the western grey kangaroo Macropus fuliginosus (5.8–70.5?kg post‐pouch body mass). The effective mechanical advantage of the ankle extensors does not vary with post‐pouch body mass, scaling with an exponent not significantly different from 0.0. Therefore, larger kangaroos balance rotational moments around the ankle by generating muscle forces proportional to weight‐related gravitational forces. Maximum force is dependent upon the physiological cross‐sectional area of the muscle, which we found scales geometrically with a mean exponent of only 0.67, rather than 1.0. Therefore, larger kangaroos are limited in their capacity to oppose large external forces around the ankle, potentially compromising fast or accelerative hopping. The strain energy return capacity of the ankle extensor tendons increases with a mean exponent of ~1.0, which is much shallower than the exponent derived from interspecific analyses of hopping mammals (~1.4–1.9). Tendon safety factor (ratio of rupture stress to estimated peak hopping stress) is lowest in the gastrocnemius (?2), and it decreases with body mass with an exponent of ?0.15, extrapolating to a predicted rupture at 160?kg. Extinct giant kangaroos weighing 250?kg could therefore not have engaged in fast hopping using ‘scaled‐up’ lower hindlimb morphology of extant western grey kangaroos.
机译:摘要BipeDal跳跃被Macropods使用,包括Rat-Kangaroos,袋鼠和袋鼠(Superfamily Macropoidea)。在这些跳跃双胞胎的下后肢中的踝关节伸肌肌腱单元的间隙缩放表明,峰值肌腱应力与体尺寸不成比例地增加。因此,大袋鼠储存并在肌腱中恢复更多的应变能量,使跳跃更有效,但它们的肌腱具有更大的破裂风险。这是第一个关于踝关节伸肌肌腱单位(胃肠炎,Plantaris和Digitorum Longus)中最大的跳跃哺乳动物中最大的跳跃哺乳动物,西灰袋鼠大鼠富尼科斯(5.8-70.5? kg后袋体重)。踝关节伸肌的有效机械优势不会随着袋子后体重而变化,并且具有指数的缩放与0.0没有显着不同。因此,通过产生与重量相关的重力力成比例的肌肉力,较大的袋鼠平衡脚踝周围的旋转力矩。最大力取决于肌肉的生理横截面积,我们发现几何上的鳞片状况,平均指数仅为0.67,而不是1.0。因此,较大的袋鼠的能力有限,以反对踝关节周围的大型外力,可能会损害快速或加速跳跃。踝关节伸肌的应变能量返回容量随着〜1.0的平均指数而增加,比跳跃哺乳动物的斑点分析得出的指数要浅(〜1.4-1.9)。肌腱安全因子(破裂应力与估计峰值应力的比率)在腓肠肌(β2)中最低,并且由于体重减少了Δ0.15的指数,以160μl的预测破裂。因此,灭绝的巨型袋鼠体重250?kg可以使用现存西灰袋鼠的“缩小”较低的后肢形态来从事快速跳跃。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号