...
首页> 外文期刊>Diamond and Related Materials >Enhancement of electron emission from near-coalescent nanometer thick continuous diamond films
【24h】

Enhancement of electron emission from near-coalescent nanometer thick continuous diamond films

机译:从近聚结纳米厚的连续金刚石薄膜增强电子发射

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study we report on the dependence of electron emission properties of undoped diamond films on film thickness. It was found that regardless of primary excitation, the electron emission exhibits maximum values for near-coalescent nanometer thick continuous diamond films. The electron emission induced by photons, ions, electrons and electric fields was consistently investigated and compared for diamond film thicknesses from 70 nm up to 4.7 mu m. The absolute quantum photoyield (QPY) value at photon energy of 8.85 eV increases with film deposition time from 2.5 percent (carbonized silicon substrate) to 14 percent for a continuous 70 nm thick diamond film, followed by a decrease to 12 percent and stabilization for films of thicknesses above approx 150-200 nm. The initial coefficient of ion induced electron emission (IIEE), by 140 keVAr~+ ions, also reaches its maximum value of 116 at approx 100 nm diamond film thickness and decreases to 90-100 for thicker films. The secondary electron emission (SEE) shows maximum yield (delpta_(max)) at primary electron energy of -1000 eV. The dependence of delta_(max) on firm thickness displays similar behavior as QPY value: it obtains its maximum value of delta_(max) approx 10 at film thickness of approx 100 nm and drops to somewhat constant value of (delta_(max) approx 6.6 for thicker films. The threshold field, required for field electron emission (FEE) current of 0.3 mu A/cm~2, reaches its minimum of approx 8.5 V/mu m for approx 100 nm thick diamond firm and monotonically increases for thicker diamond films. Possible reasons for the phenomenon of enhanced electron emission from the 70-100 nm thick diamond films have been discussed.
机译:在这项研究中,我们报告了未掺杂的金刚石薄膜对膜厚度的电子发射性能的依赖性。结果发现,无论初级激发如何,电子发射都表现出近乎聚合纳米厚连续金刚石膜的最大值。由光子,离子,电子和电场引起的电子发射一致地研究,并将金刚石膜厚度从70nm的金刚石膜厚度进行比较。光子能量下的绝对量子光纤(QPY)值为8.85eV的薄膜沉积时间从2.5%(碳化硅衬底)的薄膜沉积时间增加到连续70nm厚的金刚石薄膜的14%,然后减少到12%和薄膜稳定性厚度高于约150-200nm。离子诱导的电子发射(IIE)的初始系数,140 kevar〜+离子,其最大值为116,大约100nm金刚石膜厚度,并且对于较厚的薄膜减少至90-100。二次电子发射(参见)显示在-1000eV的主要电子能量下的最大收率(Delpta_(最多))。 Delta_(MAX)对固件厚度的依赖性显示了与QPY值类似的行为:它在大约100nm的膜厚度下获得其大约10大约10的最大值,并且滴到略常数(delta_(max)约6.6对于较厚的薄膜。场电子发射(费用)所需的阈值场为0.3μA/ cm〜2的电流,最小约为8.5V / mu m,对于大约100nm厚的钻石固件,并且为较厚的金刚石薄膜单调增加已经讨论了70-100nm厚的金刚石膜的增强电子发射现象的可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号