Ab'/> Implementation of smooth nanocrystalline diamond microstructures by combining reactive ion etching and ion beam etching
首页> 外文期刊>Diamond and Related Materials >Implementation of smooth nanocrystalline diamond microstructures by combining reactive ion etching and ion beam etching
【24h】

Implementation of smooth nanocrystalline diamond microstructures by combining reactive ion etching and ion beam etching

机译:通过组合反应离子蚀刻和离子束蚀刻来实现光滑的纳米晶金刚石微结构

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractDue to its extraordinary properties diamond can be used as mold in a hot embossing process which allows the replication of micro-optical structures. For this application a low surface roughness is indispensable. We investigated the ability of ion beam etching (IBE) to smooth defined rough areas after reactive ion etching (RIE). Simulations based on the influence of the angle dependence of the ion beam etch rate showed the suitability of this approach.Different surface qualities were achieved for nanocrystalline diamond films by RIE with three different oxygen-argon gas mixtures and etch depth, respectively. SEM images displayed the expected increase of surface roughness with the oxygen share of the gas mixture and the achieved etch depth.No masking layers were employed during ion beam post-processing. The comparison of different AFM images confirm that this process enlarged the etch depths corresponding to the initial surface roughness until the rough areas are smoothed completely. With increasing surface roughness the expenditure of time necessary to reach saturation rose. Etch rates measured for reactive ion etching were 5 to 6 times higher than the etch rate measured for IBE. Simply comparing the etch time the combination of RIE and IBE is up to four times faster than only employing IBE for the fabrication of structures despite using low RIE plasma powers.Graphical abstractDisplay OmittedHighlights?Smoothing of rough areas after reactive ion etching (RIE) by ion beam etching (IBE)?IBE post-processing is easy to employ because no masking layers are used.?Initial surface roughness determines duration of IBE and step heights increase.?RIE with post-processing by IBE is considerably faster than employing IBE only.]]>
机译:<![cdata [ 抽象 由于其非凡的性能,钻石可以用作热压压花过程中的模具,允许复制微型光学结构。对于这种应用,低表面粗糙度是必不可少的。我们研究了离子束蚀刻(IBE)在反应离子蚀刻后平滑定义粗糙区域(RIE)的能力。基于离子束蚀刻速率的角度依赖性的影响的模拟显示了这种方法的适用性。 不同的表面质量通过具有三种不同的氧气气体混合物和蚀刻深度的纳米晶金刚石薄膜实现了纳米晶金刚石薄膜。 SEM图像显示了气体混合物的氧血液的预期增加的表面粗糙度和实现的蚀刻深度。 无屏蔽在离子束后处理过程中使用层。不同AFM图像的比较确认该过程扩大了与初始表面粗糙度相对应的蚀刻深度,直到粗糙区域完全平滑。随着表面粗糙度的增加,达到饱和度所需的时间的支出。用于反应离子蚀刻测量的蚀刻速率比对于IBE测量的蚀刻速率高5至6倍。只需使用低RIE等离子体功率即可更快地比较蚀刻时间的蚀刻时间即可比仅采用IBE用于制造结构的速度快四倍。 < / ce:摘要> 图形摘要 显示省略 突出显示 < CE:简单-Cara id =“sp0095”查看=“全部”> r的平滑离子束蚀刻(IBE)反应离子蚀刻(RIE)之后的ZUUGH区域 ibe后处理易于使用,因为没有使用掩蔽层。 初始表面粗糙度确定IBE的持续时间和步长增加。< / ce:para> IBE后处理的RIE比使用IBE的速度更快。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号