...
首页> 外文期刊>Human Molecular Genetics >Underlying molecular alterations in human dihydrolipoamide dehydrogenase deficiency revealed by structural analyses of disease-causing enzyme variants
【24h】

Underlying molecular alterations in human dihydrolipoamide dehydrogenase deficiency revealed by structural analyses of disease-causing enzyme variants

机译:通过疾病导致酶变体的结构分析揭示人二氢酚醛酰胺脱氢酶缺乏的潜在分子改变

获取原文
获取原文并翻译 | 示例
           

摘要

Human dihydrolipoamide dehydrogenase (hLADH, hE3) deficiency (OMIM# 246900) is an often prematurely lethal genetic disease usually caused by inactive or partially inactive hE3 variants. Here we report the crystal structure of wild-type hE3 at an unprecedented high resolution of 1.75 angstrom and the structures of six disease-causing hE3 variants at resolutions ranging from 1.44 to 2.34 angstrom. P453L proved to be the most deleterious substitution in structure as aberrations extensively compromised the active site. The most prevalent G194C-hE3 variant primarily exhibited structural alterations close to the substitution site, whereas the nearby cofactor-binding residues were left unperturbed. The G426E substitution mainly interfered with the local charge distribution introducing dynamics to the substitution site in the dimer interface; G194C and G426E both led to minor structural changes. The R460G, R447G and I445M substitutions all perturbed a solvent accessible channel, the so-called H+/H2O channel, leading to the active site. Molecular pathomechanisms of enhanced reactive oxygen species (ROS) generation and impaired binding to multienzyme complexes were also addressed according to the structural data for the relevant mutations. In summary, we present here for the first time a comprehensive study that links three-dimensional structures of disease-causing hE3 variants to residual hLADH activities, altered capacities for ROS generation, compromised affinities for multienzyme complexes and eventually clinical symptoms. Our results may serve as useful starting points for future therapeutic intervention approaches.
机译:人二氢甲酰胺脱氢酶(HLADH,HE3)缺乏(OMIM#246900)是一种通常是过早性致死的遗传疾病,通常由无活性或部分无活性的HE3变体引起。在这里,我们以前所未有的高分辨率为1.75埃的野生型HE3的晶体结构,以及六种疾病的结构,造成六种疾病的结构,决议的分辨率范围为1.44至2.34埃。 P453L被证明是结构中最有害的替代,因为像差是广泛损害了活跃点的结构。最普遍的G194C-HE3变体主要表现出靠近替代部位的结构改变,而附近的辅因子结合残留物不受干扰。 G426E替换主要干扰了局部电荷分布在二聚体界面中的替代位点引入动力学; G194C和G426E都导致了微小的结构变化。 R460G,R447G和I445M替换所有扰动了溶剂可接近的通道,所谓的H + / H2O通道,导致活动位点。还根据相关突变的结构数据解决了增强的活性氧物质(ROS)生成和对偏酶复合物的结合受损的分子量。总之,我们在这里展示了第一次进行综合研究,将疾病的三维结构联系起来对残留的HLADH活动,改变了ROS生成的能力,患有次肾复合物的受损和最终临床症状。我们的结果可作为未来治疗干预方法的有用起点。

著录项

  • 来源
    《Human Molecular Genetics》 |2019年第20期|共16页
  • 作者单位

    Semmelweis Univ Dept Med Biochem MTA SE Lab Neurobiochem H-1094 Budapest Hungary;

    Helmholtz Zentrum Berlin Macromol Crystallog D-12489 Berlin Germany;

    Semmelweis Univ Dept Med Biochem MTA SE Lab Neurobiochem H-1094 Budapest Hungary;

    Semmelweis Univ Dept Med Biochem MTA SE Lab Neurobiochem H-1094 Budapest Hungary;

    Semmelweis Univ Dept Med Biochem MTA SE Lab Neurobiochem H-1094 Budapest Hungary;

    Univ Arizona Dept Chem &

    Biochem Tucson AZ 85721 USA;

    Univ Pittsburgh Sch Med Dept Pharmacol &

    Chem Biol Pittsburgh PA 15261 USA;

    Semmelweis Univ Dept Med Biochem MTA SE Lab Neurobiochem H-1094 Budapest Hungary;

    Semmelweis Univ Dept Med Biochem MTA SE Lab Neurobiochem H-1094 Budapest Hungary;

    Univ Pittsburgh Sch Med Dept Pharmacol &

    Chem Biol Pittsburgh PA 15261 USA;

    Univ Arizona Dept Chem &

    Biochem Tucson AZ 85721 USA;

    Rutgers State Univ Dept Chem Newark NJ 07102 USA;

    Helmholtz Zentrum Berlin Macromol Crystallog D-12489 Berlin Germany;

    Semmelweis Univ Dept Med Biochem MTA SE Lab Neurobiochem H-1094 Budapest Hungary;

    Semmelweis Univ Dept Med Biochem MTA SE Lab Neurobiochem H-1094 Budapest Hungary;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 医学遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号