...
首页> 外文期刊>WSEAS Transactions on Fluid Mechanics >Formula-one 3D Vehicle Aerodynamic Modeling, Geometric Idealization and Mesh Refinement Strategies
【24h】

Formula-one 3D Vehicle Aerodynamic Modeling, Geometric Idealization and Mesh Refinement Strategies

机译:公式 - 一台3D车辆空气动力学建模,几何理想和网格细化策略

获取原文
获取原文并翻译 | 示例

摘要

Aerodynamic analysis techniques on a complex 3-D geometry performed using ANSYS Fluent CFD is presented in this paper. Specifically, a formula racecar's full-car model is analyzed where aerodynamic design plays a critical role in the vehicle's performance. CFD computational fluid dynamics is used because it would not be practical to use a theoretical approach due to the geometry's complexity. In order to analyze this vehicle model the solution approach is illustrated in three parts. First, a multi-element front wing assembly is analyzed by using a high-fidelity mesh modeling technique to capture local flow structure through a multitude of flaps and vanes. After the high-fidelity meshing technique has been demonstrated, next, a sequential idealization technique is used to study various combinations of airfoils to determine which configuration gives the highest aerodynamic efficiency. The result shows that an intermediate configuration offer the best lift-to-drag ratio, and that any additional airfoils does not improve the aerodynamic efficiency. Finally, the techniques for high-fidelity meshing and iterative solving are demonstrated on a full-car model to show how to solve aerodynamic problems of a real-world, complex 3D geometry. The paper concludes with a proposal for an oblique-wing geometry which takes advantage of non-symmetric turning-bias of modern race tracks. Comparison results with a conventional-wing car show that an oblique-wing car offer higher turning-downforce and lower drag than the traditional symmetrical version.
机译:本文介绍了使用ANSYS流畅的CFD进行的复杂3-D几何体上的空气动力学分析技术。具体而言,分析了空气动力学设计在车辆性能中发挥着关键作用的情况下分析了公式Racecar的全车型。使用CFD计算流体动力学是因为使用由于几何形状的复杂性而使用理论方法并不实用。为了分析该车辆模型,解决方案方法在三个部分中示出。首先,通过使用高保真网格建模技术来分析多元件前翼组件,以通过多个襟翼和叶片捕获局部流动结构。在已经证明了高保真网格化技术之后,接下来,使用顺序理想技术研究翼型的各种组合,以确定哪种配置提供了最高的空气动力学效率。结果表明,中间配置提供了最佳的升力比,并且任何额外的翼型都不提高空气动力学效率。最后,在全车型上证明了高保真网格和迭代求解的技术,以展示如何解决现实世界,复杂的3D几何的空气动力学问题。本文结束了倾斜翼几何的提案,该提案利用了现代赛道的非对称转动偏差。比较结果与传统翼车表明,斜翼车提供更高的车削,低于传统对称版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号