首页> 外文期刊>Trends in pharmacological sciences >Temporal Bias: Time-Encoded Dynamic GPCR Signaling
【24h】

Temporal Bias: Time-Encoded Dynamic GPCR Signaling

机译:时间偏置:时间编码动态GPCR信令

获取原文
获取原文并翻译 | 示例
           

摘要

Evidence suggests that cells can time-encode signals for secure transport and perception of information, and it appears that this dynamic signaling is a common principle of nature to code information in time. G-protein-coupled receptor (GPCR) signaling networks are no exception as their composition and signal transduction appear temporally flexible. In this review, we discuss the potential mechanisms by which GPCRs code biological information in time to create ‘temporal bias.’ We highlight dynamic signaling patterns from the second messenger to the receptor–ligand level and shed light on the dynamics of G-protein cycles, the kinetics of ligand–receptor interaction, and the occurrence of distinct signaling waves within the cell. A dynamic feature such as temporal bias adds to the complexity of GPCR signaling bias and gives rise to the question whether this trait could be exploited to gain control over time-encoded cell physiology. Trends Over the past years, the temporal dimension of signaling emerged as a discrete parameter of cell signaling and is referred to as dynamic signaling. Technical developments allowed the assessment of temporal bias, such as Single-cell and single-molecule fluorescent biosensors based on resonance energy transfer (FRET/BRET) for intra- and inter-molecular rearrangement and interaction, respectively, or protein-induced fluorescence enhancement (PIFE). Single-molecule tracking and fluorescence correlation spectroscopy (FCS). Optogenetic engineering of the cellular signaling machinery in vitro and in vivo as well as light-controlled chemistry. Electron paramagnetic resonance (EPR) and double electron-electron resonance spectroscopy (DEER). Real-time functional assays such as luminescence/fluorescence second messenger assays. Holistic cellular real-time assays, label-free optical (DMR) and electrical (CDS) techniques. High-content imaging systems/microscopy with improved temporal and spatial resolution. Computational methods (e.g., molecular dynamics simulations). These developments led to the introduction of several concepts that underlie kinetic aspects of GPCR signaling, such as kinetic scaffolding, ligand residence time, dwell times, frequency filters, oscillatory phenomena, signaling from internalized receptors and structural dynamics as signaling determinant. This prompted us to consider temporal bias as a kinetic quality beside physical and spatial quality as a category of signaling bias.
机译:证据表明,细胞可以时间编码信号以确保传输和信息的感知,并且似乎这种动态信令是对代码信息的自然的共同原则。 G蛋白偶联受体(GPCR)信号传导网络也不例外,因为它们的组成和信号转导看起来是时间柔性的。在本次审查中,我们讨论了GPCRS代码生物信息及时创建“时间偏压”的潜在机制。我们从第二个信使到受体 - 配体水平的动态信令模式,并在G蛋白循环的动态上脱光,配体 - 受体相互作用的动力学,以及细胞内的不同信号波的发生。诸如时间偏置的动态特征增加了GPCR信令偏置的复杂性,并引发了这个特征可以被利用以获得控制时间编码的小区生理学的问题。过去几年的趋势,信号传导的时间尺寸被作为小区信令的离散参数出现并且被称为动态信令。技术开发允许基于共振能量转移(FRET / BRET)进行单细胞和单分子荧光生物传感器的临时偏压,分别用于分子和分子间重排和相互作用,或蛋白质诱导的荧光增强( Pife)。单分子跟踪和荧光相关光谱(FCS)。体外和体内细胞信号机械的光学工程以及轻控制的化学。电子顺磁共振(EPR)和双电子 - 电子共振光谱(鹿)。实时功能测定,如发光/荧光第二信使测定。整体蜂窝实时测定,无标记光学(DMR)和电气(CDS)技术。高含量成像系统/显微镜,具有改进的时间和空间分辨率。计算方法(例如,分子动力学模拟)。这些发展导致引入了几种基于GPCR信令的动力学方面的概念,例如动力学支架,配体停留时间,停留时间,频率滤波器,振荡现象,从内化受体和结构动态的信号传导和作为信令的传导传导。这促使我们将时间偏置视为物理和空间质量的动力学质量,作为信号偏差类别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号