...
首页> 外文期刊>Tribology letters >Atomistic Insights on the Wear/Friction Behavior of Nanocrystalline Ferrite During Nanoscratching as Revealed by Molecular Dynamics
【24h】

Atomistic Insights on the Wear/Friction Behavior of Nanocrystalline Ferrite During Nanoscratching as Revealed by Molecular Dynamics

机译:分子动力学揭示期间纳米晶铁素质磨损/摩擦行为的原子洞察

获取原文
获取原文并翻译 | 示例
           

摘要

Using embedded atom method potential, extensive large-scale molecular dynamics (MD) simulations of nanoindentation/nanoscratching of nanocrystalline (nc) iron have been carried out to explore grain size dependence of wear response. MD results show no clear dependence of the frictional and normal forces on the grain size, and the single-crystal (sc) iron has higher frictional and normal force compared to nc-samples. For all samples, the dislocation- mediated mechanism is the primary cause of plastic deformation in both nanoindentation/nanoscratch. However, secondary cooperative mechanisms are varied significantly according to grain size. Pileup formation was observed in the front of and sideways of the tool, and they exhibit strong dependence on grain orientation rather than grain size. Tip size has significant impact on nanoscratch characteristics; both frictional and normal forces monotonically increase as tip radii increase, while the friction coefficient value drops by about 38%. Additionally, the increase in scratch depth leads to an increase in frictional and normal forces as well as friction coefficient. To elucidate the relevance of indentation/scratch results with mechanical properties, uniaxial tensile test was performed for nc-samples, and the result indicates the existence of both the regular and inverse Hall-Petch relations at critical grain size of 110.9 angstrom. The present results suggest that indentation/scratch hardness has no apparent correlation with the mechanical properties of the substrate, whereas the plastic deformation has.
机译:使用嵌入的原子方法电位,已经进行了广泛的大规模分子动力学(MD)模拟纳米晶(NC)铁的纳米茚/纳米纳克·纳米,以探索磨损反应的晶粒尺寸依赖性。 MD结果表明,与NC样品相比,单晶(SC)铁的摩擦和正常力没有明确依赖性,并且单晶(SC)铁具有更高的摩擦力和正常力。对于所有样品,脱位介导的机制是纳米茚满/纳秒塑性变形的主要原因。然而,次级协同机制根据晶粒尺寸而显着变化。在工具的前沿和侧面观察到堆积形成,它们对晶粒取向而不是晶粒尺寸表现出强烈依赖。尖端尺寸对纳米克拉特征产生重大影响;摩擦和正常力既随着尖端半径的增加单调增加,而摩擦系数值下降约38%。另外,划痕深度的增加导致摩擦和正常力的增加以及摩擦系数。为了阐明压痕/划痕导出与机械性能的相关性,对NC样品进行单轴拉伸试验,结果表明,在临界粒度为110.9埃的临界粒度下存在常规和逆霍尔 - PACH关系。本结果表明,压痕/划痕硬度与基板的机械性能没有明显的相关性,而塑性变形具有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号