首页> 外文期刊>Theoretical and Applied Genetics: International Journal of Breeding Research and Cell Genetics >Testing methods and statistical models of genomic prediction for quantitative disease resistance toPhytophthora sojaein soybean [Glycine max(L.) Merr] germplasm collections
【24h】

Testing methods and statistical models of genomic prediction for quantitative disease resistance toPhytophthora sojaein soybean [Glycine max(L.) Merr] germplasm collections

机译:定量致病性抗性抗性抗病素硫酸大豆大豆液[甘氨酸最大(L.)Merr]种质收集的测试方法及统计模型

获取原文
获取原文并翻译 | 示例
           

摘要

Key message Genomic prediction of quantitative resistance towardPhytophthora sojaeindicated that genomic selection may increase breeding efficiency. Statistical model and marker set had minimal effect on genomic prediction with > 1000 markers. Quantitative disease resistance (QDR) towardPhytophthora sojaein soybean is a complex trait controlled by many small-effect loci throughout the genome. Along with the technical and rate-limiting challenges of phenotyping resistance to a root pathogen, the trait complexity can limit breeding efficiency. However, the application of genomic prediction to traits with complex genetic architecture, such as QDR towardP. sojae, is likely to improve breeding efficiency. We provide a novel example of genomic prediction by measuring QDR toP. sojaein two diverse panels of more than 450 plant introductions (PIs) that had previously been genotyped with the SoySNP50K chip. This research was completed in a collection of diverse germplasm and contributes to both an initial assessment of genomic prediction performance and characterization of the soybean germplasm collection. We tested six statistical models used for genomic prediction including Bayesian Ridge Regression; Bayesian LASSO; Bayes A, B, C; and reproducing kernel Hilbert spaces. We also tested how the number and distribution of SNPs included in genomic prediction altered predictive ability by varying the number of markers from less than 50 to more than 34,000 SNPs, including SNPs based on sequential sampling, random sampling, or selections from association analyses. Predictive ability was relatively independent of statistical model and marker distribution, with a diminishing return when more than 1000 SNPs were included in genomic prediction. This work estimated relative efficiency per breeding cycle between 0.57 and 0.83, which may improve the genetic gain forP. sojaeQDR in soybean breeding programs.
机译:关键消息对定量耐药性的基因组预测脱豆类injaeIndicated,基因组选择可能增加育种效率。统计模型和标记集对基因组预测的影响最小,具有> 1000标记。定量疾病抗性(QDR)的嗜毒素硫酸苏替肽大豆是一种在整个基因组中受许多小效应基因座控制的复杂性状。随着对根病原体的表型抗性的技术和速率限制挑战,特性复杂性可以限制育种效率。然而,基因组预测将基因组预测与复杂的遗传架构的特征,例如QDR朝向水。 Sojae可能会提高育种效率。我们通过测量QDR顶部提供了一种基因组预测的新颖实例。 Sojaein两种多样化的面板,超过450种植物介绍(PIS),先前已经用大豆芯片芯片进行了基因分型。该研究在各种种质的集合中完成,有助于初步评估基因组预测性能和大豆种质收集的表征。我们测试了用于基因组预测的六种统计模型,包括贝叶斯岭回归;贝叶斯套索;贝叶斯A,B,C;并再现内核希尔伯特空间。我们还测试了基因组预测中包含的SNP的数量和分布改变了预测能力,通过改变了小于50到34,000个SNP的标记数,包括基于顺序采样,随机采样或从关联分析的选择的SNP。预测能力相对独立于统计模型和标记分布,当在基因组预测中包含超过1000个SNP时,返回递减。这项工作估计每种繁殖循环的相对效率在0.57和0.83之间,这可能改善遗传增益FORP。 Sojaeqdr在大豆育种计划中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号